cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342534 a(n) = Sum_{k=1..n} phi(gcd(k, n))^2.

Original entry on oeis.org

1, 2, 6, 7, 20, 12, 42, 26, 50, 40, 110, 42, 156, 84, 120, 100, 272, 100, 342, 140, 252, 220, 506, 156, 484, 312, 438, 294, 812, 240, 930, 392, 660, 544, 840, 350, 1332, 684, 936, 520, 1640, 504, 1806, 770, 1000, 1012, 2162, 600, 2022, 968, 1632, 1092, 2756, 876, 2200, 1092, 2052
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^2 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^2);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^2);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^2.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n)). - Richard L. Ollerton, May 10 2021
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p-1)*(p^(e-2) - p^(2*e-3) + p^(2*e-1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)/(3*zeta(3)) * Product_{p prime} (1 - (2*p-1)/p^3) = A306633 * A065464 / 3 = 0.195343... . (End)