A342550 For n>=3, a(n) is the sum of the indices of n seen as an m-gonal number.
2, 2, 2, 5, 2, 2, 5, 6, 2, 5, 2, 2, 10, 6, 2, 5, 2, 2, 11, 6, 2, 5, 7, 2, 5, 13, 2, 5, 2, 2, 5, 6, 7, 19, 2, 2, 5, 6, 2, 5, 2, 2, 19, 6, 2, 5, 9, 2, 11, 6, 2, 5, 17, 2, 5, 6, 2, 5, 2, 2, 5, 14, 7, 22, 2, 2, 5, 13, 2, 5, 2, 2, 10, 6, 2, 17, 2, 2, 20, 6, 2, 5, 7, 2, 5
Offset: 3
Keywords
Examples
15 is the 5th triangular, the 3rd hexagonal and the 2nd 15-gonal, so a(15) = 5+3+2 = 10.
Links
- Michel Marcus, Table of n, a(n) for n = 3..10000
Programs
-
PARI
row(n) = my(v=List()); fordiv(2*n, k, if(k<2, next); if(k==n, break); my(s=(2*n/k-4+2*k)/(k-1)); if(denominator(s)==1, listput(v, s))); Vecrev(v); \\ A177028 a(n) = my(v=row(n), s=0); for (k=1, #v, if ((v[k]>2) && ispolygonal(n, v[k], &i), s += i)); s;
Comments