A342576 Independent domination number for knight graph on an n X n board.
1, 4, 4, 4, 5, 8, 13, 14, 14, 16, 22, 24, 29, 33, 36, 40, 47, 52, 58, 63, 68
Offset: 1
References
- Sandra M. Hedetniemi, Stephen T. Hedetniemi, Robert Reynolds, Combinatorial Problems on Chessboards: II, in: Domination in Graphs - Advanced Topics, Marcel Dekker, 1998. See p. 141.
Links
- Andy Huchala, Python program.
- Robert Israel, Optimal configurations for n = 3 to 14
- Eric Weisstein's World of Mathematics, Knight Graph.
- Eric Weisstein's World of Mathematics, Lower Independence Number.
Programs
-
Maple
f:= proc(N) local verts,Rverts,edg,cons,i,j,e; verts:= [seq(seq([i,j],i=1..N),j=1..N)]: for i from 1 to N^2 do Rverts[op(verts[i])]:= i od: edg:= {seq(seq({Rverts[i,j],Rverts[i+1,j+2]},i=1..N-1),j=1..N-2), seq(seq({Rverts[i,j],Rverts[i+2,j+1]},i=1..N-2),j=1..N-1), seq(seq({Rverts[i,j],Rverts[i+1,j-2]},i=1..N-1),j=3..N), seq(seq({Rverts[i,j],Rverts[i+2,j-1]},i=1..N-2),j=2..N)}: cons:= {seq(x[e[1]]+x[e[2]]<=1, e=edg), seq(x[i]+add(`if`(member({i,j},edg),x[j],0),j=1..N^2)>=1, i=1..N^2)}: Optimization:-Minimize(add(x[i],i=1..N^2),cons,assume=binary)[1] end proc: map(f, [$1..13]); # Robert Israel, Mar 17 2021
Extensions
a(11) to a(14) from Robert Israel, Mar 17 2021
a(15)-a(18) from Eric W. Weisstein, Aug 01 2023
a(19) from Eric W. Weisstein, Jan 14 2024
a(20)-a(21) from Andy Huchala, Mar 10 2024