A342586 a(n) is the number of pairs (x,y) with 1 <= x, y <= 10^n and gcd(x,y)=1.
1, 63, 6087, 608383, 60794971, 6079301507, 607927104783, 60792712854483, 6079271032731815, 607927102346016827, 60792710185772432731, 6079271018566772422279, 607927101854119608051819, 60792710185405797839054887, 6079271018540289787820715707, 607927101854027018957417670303
Offset: 0
Keywords
References
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54. (See link below.)
Links
- Joachim von zur Gathen and Jürgen Gerhard, Extract from "3.4. (Non-)Uniqueness of the gcd" chapter, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
- Hugo Pfoertner, Illustration of a(2)=6087.
Crossrefs
a(n) = 2*A064018(n) - 1. - Hugo Pfoertner, Mar 16 2021
a(n) = A018805(10^n). - Michel Marcus, Mar 16 2021
Related counts of k-tuples:
5-tuples: A343282;
Programs
-
PARI
a342586(n)=my(s, m=10^n); forfactored(k=1,m,s+=eulerphi(k)); s*2-1 \\ Bruce Garner, Mar 29 2021
-
PARI
a342586(n)=my(s, m=10^n); forsquarefree(k=1,m,s+=moebius(k)*(m\k[1])^2); s \\ Bruce Garner, Mar 29 2021
-
Python
import math for n in range (0,10): counter = 0 for x in range (1, pow(10,n)+1): for y in range(1, pow(10,n)+1): if math.gcd(y,x) == 1: counter += 1 print(n, counter)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A018805(n): if n == 1: return 1 return n*n - sum(A018805(n//j) for j in range(2, n//2+1)) - (n+1)//2 print([A018805(10**n) for n in range(8)]) # Michael S. Branicky, Mar 18 2021
Formula
Lim_{n->infinity} a(n)/10^(2*n) = 6/Pi^2 = 1/zeta(2).
Extensions
a(10) from Michael S. Branicky, Mar 18 2021
More terms using A064018 from Hugo Pfoertner, Mar 18 2021
Edited by N. J. A. Sloane, Jun 13 2021