cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342607 a(n) = Sum_{d|n} phi(d)^(n-d).

Original entry on oeis.org

1, 2, 2, 3, 2, 11, 2, 19, 66, 1027, 2, 835, 2, 279939, 1052674, 69635, 2, 10114563, 2, 1074855939, 78364426242, 100000000003, 2, 4315152387, 1099511627778, 106993205379075, 101559973445634, 21937029021319171, 2, 1162183941554179, 2, 562950221856771, 10000000000001073741826
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^(n-d));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-n/gcd(k, n)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n - n/gcd(k,n) - 1).
G.f.: Sum_{k>=1} x^k/(1 - (phi(k) * x)^k).
If p is prime, a(p) = 2.

A342613 a(n) = Sum_{d|n} phi(n/d)^(n+d).

Original entry on oeis.org

1, 2, 17, 34, 4097, 386, 1679617, 263170, 60470273, 20971522, 1000000000001, 67223554, 1283918464548865, 3291294892034, 281543697235969, 2251868534210562, 4722366482869645213697, 4265518198947842, 12748236216396078174437377, 9223671104051085314, 552066177293775007645697, 1100000000000000000000002
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]^(n + #) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)^(n+d));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n+gcd(k, n)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^(k+1)*x^k/(1-eulerphi(k)^(k+1)*x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n + gcd(k,n) - 1).
G.f.: Sum_{k>=1} phi(k)^(k+1) * x^k/(1 - phi(k)^(k+1) * x^k).
If p is prime, a(p) = 1 + (p-1)^(p+1).

A342618 a(n) = Sum_{d|n} phi(d)^(n+d+1).

Original entry on oeis.org

1, 2, 129, 514, 4194305, 9218, 470184984577, 17179877378, 609359740018689, 4402341478402, 100000000000000000000001, 1125899907563522, 137370551967459378662586974209, 36845784908492735250434, 9903520314283046597240029185
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^(n + # + 1) &]; Array[a, 15] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^(n+d+1));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n+n/gcd(k, n)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^(2*k+1)*x^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n + n/gcd(k,n)).
G.f.: Sum_{k>=1} phi(k)^(2*k+1) * x^k/(1 - (phi(k) * x)^k).
If p is prime, a(p) = 1 + (p-1)^(2*p+1).
Showing 1-3 of 3 results.