cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342608 a(n) = Sum_{d|n} phi(d)^(n+d).

Original entry on oeis.org

1, 2, 65, 258, 1048577, 4610, 78364164097, 4294971394, 101559956672513, 1100585369602, 10000000000000000000001, 281474977071106, 11447545997288281555215581185, 6140964151415455875074, 1237940039285381374411014145, 79228162514264619068521709570
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^(n + #) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^(n+d));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n+n/gcd(k, n)-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)^2*x)^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n + n/gcd(k,n) - 1).
G.f.: Sum_{k>=1} (phi(k)^2 * x)^k/(1 - (phi(k) * x)^k).
If p is prime, a(p) = 1 + (p-1)^(2*p).

A342620 a(n) = Sum_{d|n} phi(n/d)^(n+d+1).

Original entry on oeis.org

1, 2, 33, 66, 16385, 770, 10077697, 1050626, 362805249, 83886082, 10000000000001, 268664834, 15407021574586369, 19747769352194, 2252074693689345, 18014673389486082, 75557863725914323419137, 25593109118189570, 229468251895129407139872769, 73788172563556335618, 6624765697237267477692417, 11000000000000000000000002
Offset: 1

Views

Author

Seiichi Manyama, Mar 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]^(n + # + 1) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)^(n+d+1));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n+gcd(k, n)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^(k+2)*x^k/(1-eulerphi(k)^(k+1)*x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k,n))^(n + gcd(k,n)).
G.f.: Sum_{k>=1} phi(k)^(k+2) * x^k/(1 - phi(k)^(k+1) * x^k).
If p is prime, a(p) = 1 + (p-1)^(p+2).
Showing 1-2 of 2 results.