cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342666 a(n) = A336466(A156552(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 9, 1, 5, 1, 11, 1, 3, 3, 3, 1, 3, 1, 15, 1, 21, 1, 1, 1, 1, 5, 3, 1, 9, 1, 33, 5, 9, 1, 23, 1, 1, 3, 65, 1, 7, 1, 35, 21, 5, 1, 21, 1, 341, 9, 3, 1, 11, 1, 27, 1, 5, 1, 5, 1, 15, 3, 51, 1, 27, 1, 39, 1, 1365, 1, 1, 5, 49, 9, 1, 1, 1, 1, 117, 5, 825, 3, 9, 1, 9, 3, 1, 1, 7, 1
Offset: 2

Views

Author

Antti Karttunen, Mar 18 2021

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A342666(n) = A336466(A156552(n));
    
  • PARI
    \\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
    v156552sigs = readvec("a156552.txt");
    A000265(n) = (n>>valuation(n,2));
    A342666(n) = if(isprime(n),1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,A000265(ps[i]-1)^es[i])); \\ Antti Karttunen, Jan 29 2022

Formula

a(n) = A336466(A156552(n)) = A336466(A322993(n)).
a(p) = 1 for all primes p.
a(A003961(n)) = a(n).