cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342674 Square array A(n,k) = A341530(A246278(n,k)), read by falling antidiagonals; A341530 as applied onto prime shift array A246278.

Original entry on oeis.org

1, 1, 2, 36, 1, 2, 5, 120, 1, 4, 2, 4, 336, 19, 2, 36, 8, 4, 264, 1, 2, 24, 30, 56, 8, 1092, 1, 2, 1, 12, 28, 56, 4, 612, 1, 4, 9, 11, 12, 418, 8, 20, 2280, 1, 6, 2, 10, 1, 48, 26, 8, 20, 5520, 1, 2, 4, 4, 266, 1, 48, 34, 24, 40, 6960, 1, 2, 180, 4, 42, 308, 1, 12, 76, 24, 60, 1984, 3, 2, 18, 240, 4, 798, 26, 1, 20, 138, 12, 4, 2812, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2021

Keywords

Examples

			The top left corner of the array:
   k =  1  2     3   4   5    6   7   8    9   10   11     12    13   14
  2k =  2  4     6   8  10   12  14  16   18   20   22     24    26   28
     |
-----+--------------------------------------------------------------------------
n= 1 | 1,  1,   36,  5,  2,  36, 24,  1,   9,   2,   4,    180,  18, 168,
   2 | 2,  1,  120,  4,  8,  30, 12, 11,  10,   4,   4,    240, 360,   6,
   3 | 2,  1,  336,  4, 56,  28, 12,  1, 266,  42,   4,    672, 120,   2,
   4 | 4, 19,  264,  8, 56, 418, 48,  1, 308, 798,  32,    528,  24,  38,
   5 | 2,  1, 1092,  4,  8,  26, 48,  1,  26,   6,  12,  37128,   8,  76,
   6 | 2,  1,  612, 20,  8,  34, 12,  1,  34,  12,  12,   6120,   4,   6,
   7 | 2,  1, 2280, 20, 24,  76, 20,  1,  38,   6, 152,   4560,  12,   6,
   8 | 4,  1, 5520, 40, 24, 138, 16,  1,  92,   2, 152,  11040,  24,   2,
   9 | 6,  1, 6960, 60, 12,  58, 12,  1, 174,   2,  24,  13920,  96,  14,
  10 | 2,  1, 1984,  4, 12,  62,  4,  1, 186,   2,  24, 146816, 288,   6,
  11 | 2,  3, 2812,  4,  8, 222, 32, 11,  74,  42,  12,   5624,  24,  12,
  12 | 2,  1, 3444,  4,  8,  82, 12,  1,  82,  12,  36,   6888,  12,  18,
		

Crossrefs

Programs

  • PARI
    up_to = 91;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A342674sq(row,col) = A341530(A246278sq(row,col));
    A342674list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A342674sq(col,(a-(col-1))))); (v); };
    v342674 = A342674list(up_to);
    A342674(n) = v342674[n];

Formula

A(n,k) = A341530(A246278(n,k)).