cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342695 a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 0, 1, 2, 4, 4, 8, 10, 14, 15, 21, 21, 27, 31, 36, 42, 48, 46, 58, 61, 68, 73, 83, 83, 96, 100, 110, 114, 127, 123, 144, 146, 157, 165, 175, 179, 201, 201, 212, 221, 241, 235, 258, 265, 275, 282, 303, 301, 328, 330, 346, 351, 381, 377, 403, 406, 427, 433, 455, 452, 486, 493
Offset: 1

Views

Author

Wesley Ivan Hurt, May 18 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         1            2                 4
------------------------------------------------------------------------
  primes   {}       {}        {5}        {7,11}         {7,13,17,19}
------------------------------------------------------------------------
		

Crossrefs

Cf. A000720 (pi), A038107, A221490, A344316 (on border), A344349.

Programs

  • Mathematica
    Table[PrimePi[n*(n - 1)] - PrimePi[n] - Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]

Formula

a(n) = pi(n*(n-1)) - pi(n) - Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).