A342814 Numbers k such that k - 1 and floor(k/5) are both prime.
12, 14, 18, 38, 68, 98, 158, 308, 338, 368, 398, 488, 548, 758, 788, 908, 968, 998, 1118, 1568, 1658, 1748, 1868, 1988, 2288, 2438, 2618, 2708, 2858, 2888, 3038, 3068, 3218, 3308, 3458, 3548, 3638, 3698, 3848, 4058
Offset: 1
Examples
12 is a term because 12 - 1 = 11 and 11 is prime and 12/5 = 2.4 whose floor value is 2 and 2 is also prime. 97 is not a term because 97 - 1 = 96 and 96 is not prime although floor(97/5) = 19 is prime. Initial terms, associated primes and d: k k - 1 floor(k/5) d a(1) 12 11 2 a(2) 14 13 2 0 a(3) 18 17 3 1 a(4) 38 37 7 4 a(5) 68 67 13 6 a(6) 98 97 19 6 a(7) 158 157 31 12 a(8) 308 307 61 30 a(9) 338 337 67 6 a(10) 368 367 73 6
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: p:= 1: count:= 0: while count < 100 do p:= nextprime(p); if isprime(floor((p+1)/5)) then R:= R,p+1; count:= count+1 fi od: R; # Robert Israel, May 22 2024
-
Mathematica
Select[Range[2,5000,2],And@@PrimeQ[{#-1,Floor[#/5]}]&] (* Giorgos Kalogeropoulos, Apr 01 2021 *)
-
PARI
for(k = 1,10000,if(isprime(k - 1) && isprime(k\5),print1(k", ")))
Comments