A342891 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_12 (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 13, 1, 1, 91, 91, 1, 1, 455, 3185, 455, 1, 1, 1820, 63700, 63700, 1820, 1, 1, 6188, 866320, 4331600, 866320, 6188, 1, 1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1, 1, 50388, 71954064, 4892876352, 19571505408, 4892876352, 71954064, 50388, 1
Offset: 0
Examples
Triangle begins: [1], [1, 1], [1, 13, 1], [1, 91, 91, 1], [1, 455, 3185, 455, 1], [1, 1820, 63700, 63700, 1820, 1], [1, 6188, 866320, 4331600, 866320, 6188, 1], [1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1], ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Programs
-
PARI
f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m)); T(n, k) = f(n, k, 12); \\ Seiichi Manyama, Apr 02 2021
Formula
The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).
Comments