A007318 Pascal's triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1 9 1 9 36 84 126 126 84 36 9 1 10 1 10 45 120 210 252 210 120 45 10 1 11 1 11 55 165 330 462 462 330 165 55 11 1 ... There are C(4,2)=6 ways to distribute 5 balls BBBBB, among 3 different urns, < > ( ) [ ], so that each urn gets at least one ball, namely, <BBB>(B)[B], <B>(BBB)[B], <B>(B)[BBB], <BB>(BB)[B], <BB>(B)[BB], and <B>(BB)[BB]. There are C(4,2)=6 increasing functions from {1,2} to {1,2,3,4}, namely, {(1,1),(2,2)},{(1,1),(2,3)}, {(1,1),(2,4)}, {(1,2),(2,3)}, {(1,2),(2,4)}, and {(1,3),(2,4)}. - _Dennis P. Walsh_, Apr 07 2011 There are C(4,2)=6 subsets of {1,2,3,4,5} with median element 3, namely, {3}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, and {1,2,3,4,5}. - _Dennis P. Walsh_, Dec 15 2011 The successive k-iterations of {A(0)} = E are E;E;E;...; the corresponding number of elements are 1,1,1,... The successive k-iterations of {A(1)} = {a} are (omitting brackets) a;a,E; a,E,E;...; the corresponding number of elements are 1,2,3,... The successive k-iterations of {A(2)} = {a,a} are aa; aa,a,E; aa, a, E and a,E and E;...; the corresponding number of elements are 1,3,6,... - _Gregory L. Simay_, Aug 06 2018 Boas-Buck type recurrence for column k = 4: T(8, 4) = (5/4)*(1 + 5 + 15 + 35) = 70. See the Boas-Buck comment above. - _Wolfdieter Lang_, Nov 12 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, vol. 1 (1966), pp. 68-74.
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 63ff.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 306.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 68-74.
- Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- A. W. F. Edwards, Pascal's Arithmetical Triangle, 2002.
- William Feller, An Introduction to Probability Theory and Its Application, Vol. 1, 2nd ed. New York: Wiley, p. 36, 1968.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 155.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, pp. 140-141.
- David Hök, Parvisa mönster i permutationer [Swedish], 2007.
- Donald E. Knuth, The Art of Computer Programming, Vol. 1, 2nd ed., p. 52.
- Sergei K. Lando, Lecture on Generating Functions, Amer. Math. Soc., Providence, R.I., 2003, pp. 60-61.
- Blaise Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière, Desprez, Paris, 1665.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 271-275.
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 6.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
- Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996, p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, pages 43-52.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 13, 30-33.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 115-118.
- Douglas B. West, Combinatorial Mathematics, Cambridge, 2021, p. 25.
Links
- N. J. A. Sloane, First 141 rows of Pascal's triangle, formatted as a simple linear sequence: (n, a(n)), n=0..10152.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332, No. 6 (2014), pp. 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42 (2012), pp. 2053-2059.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, Vol. 1 (1966), pp. 68-74.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Peter Bala, A combinatorial interpretation for the binomial coefficients, 2013.
- Cyril Banderier and Donatella Merlini, Lattice paths with an infinite set of jumps, Proceedings of the 14th International Conference on Formal Power Series and Algebraic Combinatorics, Melbourne, Australia. 2002.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays , JIS, Vol. 12 (2009) Article 09.8.6.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011) Article 11.4.3, example 2.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.2.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.1.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.4.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.6.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Vol. 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, Vol. 491 (2016), pp. 343-385.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- Paul Barry, On the r-shifted central triangles of a Riordan array, arXiv:1906.01328 [math.CO], 2019.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 2.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2.
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc. (2), Vol. 79 (2009), pp. 422-444.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 4.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- Douglas Butler, Pascal's Triangle.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Dario T. de Castro, p-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1 (2013), pp. 73-98.
- CombOS - Combinatorial Object Server, Generate combinations.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A, Vo. 453, No. 1966 (1997), pp. 2369-2389.
- Tom Copeland, Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, Vol. 5 (1977), pp. 72-81.
- Karl Dilcher and Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes, The American Mathematical Monthly, Vol. 112, No. 8 (Oct 2005), pp. 673-681.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182-2212. MR2404544 (2009j:05019).
- Steffen Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq., Vol. 18 (2015), Article 15.4.1.
- Leonhard Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. See also The Euler Archive, item E709.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
- A. Farina, S. Giompapa, A. Graziano, A. Liburdi, M. Ravanelli, and F. Zirilli, Tartaglia-Pascal's triangle: a historical perspective with applications, Signal, Image and Video Processing, Vol. 7, No. 1 (January 2013), pp. 173-188.
- Steven Finch, Pascal Sebah, and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- David Fowler, The binomial coefficient function, Amer. Math. Monthly, Vol. 103, No. 1 (1996), pp. 1-17.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023
- Brady Haran and Casandra Monroe, Pascal's Triangle, Numberphile video (2017).
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., Vol. 309, No. 12 (2009), pp. 3962-3974.
- Nick Hobson, Python program for A007318.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom. [archived page]
- Charles Jordan, Calculus of Finite Differences (p. 65).
- Subhash Kak, The golden mean and the physics of aesthetics, in: B. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, MA, 2009, pp. 111-119; arXiv preprint, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Petro Kolosov, Polynomial identities involving Pascal's triangle rows, 2022.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Eitan Y. Levine, GCD formula proof.
- Meng Li and Ron Goldman, Limits of sums for binomial and Eulerian numbers and their associated distributions, Discrete mathematics, Vol. 343, No. 7 (2020), 111870.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, Vol. 184 (1893), pp. 835-901.
- Mathforum, Pascal's Triangle
- Carl McTague, On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q), arXiv:1510.06696 [math.CO], 2015.
- D. Merlini, R. Sprugnoli, and M. C. Verri, An algebra for proper generating trees, in: D. Gardy and A. Mokkadem (eds.), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 127-139; alternative link.
- Donatella Merlini, Francesca Uncini, and M. Cecilia Verri, A unified approach to the study of general and palindromic compositions, Integers, Vol. 4 (2004), A23, 26 pp.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Pierre Remond de Montmort, Essay d'analyse sur les jeux de hazard, Paris: Chez Jacque Quillau, 1708, p. 80.
- Yossi Moshe, The density of 0's in recurrence double sequences, J. Number Theory, Vol. 103 (2003), pp. 109-121.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, Vol. 9, No. 2 (1997), pp. 319-335.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh, and Claus Michael Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- OEIS Wiki, Binomial coefficients
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., Vol. 36, No. 2 (1998), pp. 98-109.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003. [Cached copy, with permission (pdf only)]
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Yuriy Shablya, Dmitry Kruchinin, and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics, Vol. 8, No. 6 (2020), 962.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., Vol. 34 (1991), pp. 229-239.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Triangle showing silhouette of first 30 rows of Pascal's triangle (after Cobeli and Zaharescu)
- N. J. A. Sloane, The OEIS: A Fingerprint File for Mathematics, arXiv:2105.05111 [math.HO], 2021.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Hermann Stamm-Wilbrandt, Compute C(n+m,...) based on C(n,...) and C(m,...) values animation.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Christopher Stover and Eric W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Gérard Villemin's Almanach of Numbers, Triangle de Pascal.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Pascal's triangle.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 12ff.
- Ken Williams, Mathforum, Interactive Pascal's Triangle.
- Doron Zeilberger, The Combinatorial Astrology of Rabbi Abraham Ibn Ezra, arXiv:math/9809136 [math.CO], 1998.
- Chris Zheng and Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
- Index entries for triangles and arrays related to Pascal's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to Benford's law.
Crossrefs
Equals differences between consecutive terms of A102363. - David G. Williams (davidwilliams(AT)Paxway.com), Jan 23 2006
Row sums give A000079 (powers of 2).
Partial sums of rows give triangle A008949.
The triangle of the antidiagonals is A011973.
Another version: A108044.
Cf. A008277, A132311, A132312, A052216, A052217, A052218, A052219, A052220, A052221, A052222, A052223, A144225, A202750, A211226, A047999, A026729, A052553, A051920, A193242.
Triangle sums (see the comments): A000079 (Row1); A000007 (Row2); A000045 (Kn11 & Kn21); A000071 (Kn12 & Kn22); A001924 (Kn13 & Kn23); A014162 (Kn14 & Kn24); A014166 (Kn15 & Kn25); A053739 (Kn16 & Kn26); A053295 (Kn17 & Kn27); A053296 (Kn18 & Kn28); A053308 (Kn19 & Kn29); A053309 (Kn110 & Kn210); A001519 (Kn3 & Kn4); A011782 (Fi1 & Fi2); A000930 (Ca1 & Ca2); A052544 (Ca3 & Ca4); A003269 (Gi1 & Gi2); A055988 (Gi3 & Gi4); A034943 (Ze1 & Ze2); A005251 (Ze3 & Ze4). - Johannes W. Meijer, Sep 22 2010
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074, A228196, A228576.
Cf. A115940 (pandigital binomial coefficients C(m,k) with k>1).
Programs
-
Axiom
-- (start) )set expose add constructor OutputForm pascal(0,n) == 1 pascal(n,n) == 1 pascal(i,j | 0 < i and i < j) == pascal(i-1,j-1) + pascal(i,j-1) pascalRow(n) == [pascal(i,n) for i in 0..n] displayRow(n) == output center blankSeparate pascalRow(n) for i in 0..20 repeat displayRow i -- (end)
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)))); # Stefano Spezia, Dec 22 2018
-
Haskell
a007318 n k = a007318_tabl !! n !! k a007318_row n = a007318_tabl !! n a007318_list = concat a007318_tabl a007318_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Cf. http://www.haskell.org/haskellwiki/Blow_your_mind#Mathematical_sequences -- Reinhard Zumkeller, Nov 09 2011, Oct 22 2010
-
Magma
/* As triangle: */ [[Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A007318 := (n,k)->binomial(n,k);
-
Mathematica
Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 19 2004 *) Flatten[CoefficientList[CoefficientList[Series[1/(1 - x - x*y), {x, 0, 12}], x], y]] (* Mats Granvik, Jul 08 2014 *)
-
Maxima
create_list(binomial(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
C(n,k)=binomial(n,k) \\ Charles R Greathouse IV, Jun 08 2011
-
Python
# See Hobson link. Further programs: from math import prod,factorial def C(n,k): return prod(range(n,n-k,-1))//factorial(k) # M. F. Hasler, Dec 13 2019, updated Apr 29 2022, Feb 17 2023
-
Python
from math import comb, isqrt def A007318(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Nov 11 2024
-
Sage
def C(n,k): return Subsets(range(n), k).cardinality() # Ralf Stephan, Jan 21 2014
Formula
a(n, k) = C(n,k) = binomial(n, k).
C(n, k) = C(n-1, k) + C(n-1, k-1).
The triangle is symmetric: C(n,k) = C(n,n-k).
a(n+1, m) = a(n, m) + a(n, m-1), a(n, -1) := 0, a(n, m) := 0, n
C(n, k) = n!/(k!(n-k)!) if 0<=k<=n, otherwise 0.
C(n, k) = ((n-k+1)/k) * C(n, k-1) with C(n, 0) = 1. - Michael B. Porter, Mar 23 2025
G.f.: 1/(1-y-x*y) = Sum_(C(n, k)*x^k*y^n, n, k>=0)
G.f.: 1/(1-x-y) = Sum_(C(n+k, k)*x^k*y^n, n, k>=0).
G.f. for row n: (1+x)^n = Sum_{k=0..n} C(n, k)*x^k.
G.f. for column k: x^k/(1-x)^(k+1); [corrected by Werner Schulte, Jun 15 2022].
E.g.f.: A(x, y) = exp(x+x*y).
E.g.f. for column n: x^n*exp(x)/n!.
In general the m-th power of A007318 is given by: T(0, 0) = 1, T(n, k) = T(n-1, k-1) + m*T(n-1, k), where n is the row-index and k is the column; also T(n, k) = m^(n-k)*C(n, k).
Triangle T(n, k) read by rows; given by A000007 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Let P(n+1) = the number of integer partitions of (n+1); let p(i) = the number of parts of the i-th partition of (n+1); let d(i) = the number of different parts of the i-th partition of (n+1); let m(i, j) = multiplicity of the j-th part of the i-th partition of (n+1). Define the operator Sum_{i=1..P(n+1), p(i)=k+1} as the sum running from i=1 to i=P(n+1) but taking only partitions with p(i)=(k+1) parts into account. Define the operator Product_{j=1..d(i)} = product running from j=1 to j=d(i). Then C(n, k) = Sum_{p(i)=(k+1), i=1..P(n+1)} p(i)! / [Product_{j=1..d(i)} m(i, j)!]. E.g., C(5, 3) = 10 because n=6 has the following partitions with m=3 parts: (114), (123), (222). For their multiplicities one has: (114): 3!/(2!*1!) = 3; (123): 3!/(1!*1!*1!) = 6; (222): 3!/3! = 1. The sum is 3 + 6 + 1 = 10 = C(5, 3). - Thomas Wieder, Jun 03 2005
C(n, k) = Sum_{j=0..k} (-1)^j*C(n+1+j, k-j)*A000108(j). - Philippe Deléham, Oct 10 2005
G.f.: 1 + x*(1 + x) + x^3*(1 + x)^2 + x^6*(1 + x)^3 + ... . - Michael Somos, Sep 16 2006
Sum_{k=0..floor(n/2)} x^(n-k)*T(n-k,k) = A000007(n), A000045(n+1), A002605(n), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Sum_{k=0..floor(n/2)} (-1)^k*x^(n-k)*T(n-k,k) = A000007(n), A010892(n), A009545(n+1), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n), A084329(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, respectively. - Philippe Deléham, Sep 16 2006
C(n,k) <= A062758(n) for n > 1. - Reinhard Zumkeller, Mar 04 2008
C(t+p-1, t) = Sum_{i=0..t} C(i+p-2, i) = Sum_{i=1..p} C(i+t-2, t-1). A binomial number is the sum of its left parent and all its right ancestors, which equals the sum of its right parent and all its left ancestors. - Lee Naish (lee(AT)cs.mu.oz.au), Mar 07 2008
From Paul D. Hanna, Mar 24 2011: (Start)
Let A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n be the g.f. of the flattened triangle:
A(x) = 1 + (x + x^2) + (x^3 + 2*x^4 + x^5) + (x^6 + 3*x^7 + 3*x^8 + x^9) + ...
then A(x) equals the series Sum_{n>=0} (1+x)^n*x^n*Product_{k=1..n} (1-(1+x)*x^(2*k-1))/(1-(1+x)*x^(2*k));
also, A(x) equals the continued fraction 1/(1- x*(1+x)/(1+ x*(1-x)*(1+x)/(1- x^3*(1+x)/(1+ x^2*(1-x^2)*(1+x)/(1- x^5*(1+x)/(1+ x^3*(1-x^3)*(1+x)/(1- x^7*(1+x)/(1+ x^4*(1-x^4)*(1+x)/(1- ...))))))))).
These formulas are due to (1) a q-series identity and (2) a partial elliptic theta function expression. (End)
Row n of the triangle is the result of applying the ConvOffs transform to the first n terms of the natural numbers (1, 2, 3, ..., n). See A001263 or A214281 for a definition of this transformation. - Gary W. Adamson, Jul 12 2012
From L. Edson Jeffery, Aug 02 2012: (Start)
Row n (n >= 0) of the triangle is given by the n-th antidiagonal of the infinite matrix P^n, where P = (p_{i,j}), i,j >= 0, is the production matrix
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
... (End)
Row n of the triangle is also given by the n+1 coefficients of the polynomial P_n(x) defined by the recurrence P_0(x) = 1, P_1(x) = x + 1, P_n(x) = x*P_{n-1}(x) + P_{n-2}(x), n > 1. - L. Edson Jeffery, Aug 12 2013
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
(1+x)^n = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{i=0..k} k^(n-i)*binomial(k,i)*x^(n-i)/(n-i)!. - Vladimir Kruchinin, Oct 21 2013
E.g.f.: A(x,y) = exp(x+x*y) = 1 + (x+y*x)/( E(0)-(x+y*x)), where E(k) = 1 + (x+y*x)/(1 + (k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 08 2013
E.g.f.: E(0) -1, where E(k) = 2 + x*(1+y)/(2*k+1 - x*(1+y)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
G.f.: 1 + x*(1+x)*(1+x^2*(1+x)/(W(0)-x^2-x^3)), where W(k) = 1 + (1+x)*x^(k+2) - (1+x)*x^(k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Sum_{n>=0} C(n,k)/n! = e/k!, where e = exp(1), while allowing n < k where C(n,k) = 0. Also Sum_{n>=0} C(n+k-1,k)/n! = e * A000262(k)/k!, and for k>=1 equals e * A067764(k)/A067653(k). - Richard R. Forberg, Jan 01 2014
Sum_{n>=k} 1/C(n,k) = k/(k-1) for k>=1. - Richard R. Forberg, Feb 10 2014
From Tom Copeland, Apr 26 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result by A007318(x) = P(x). Then with :xD:^n = x^n*(d/dx)^n and B(n,x), the Bell polynomials (A008277),
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x)
B) P(:xD:) = exp(dP:xD:) = exp[(e^M-I):xD:] = exp[M*B(.,:xD:)] = exp[M*xD] = (I+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x] (cf. also A238363).
C) P(x)^y = P(y*x). P(2x) = A038207(x) = exp[M*B(.,2x)], the face vectors of the n-dim hypercubes.
D) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I+dP)^x*[St1]
E) = [St1]^(-1)*(I+dP)^x*[St1] = [St2]*(I+dP)^x*[St2]^(-1)
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and exp(x*M) = (I+dP)^x = Sum_{k>=0} C(x,k) dP^k. (End)
From Peter Bala, Dec 21 2014: (Start)
Recurrence equation: T(n,k) = T(n-1,k)*(n + k)/(n - k) - T(n-1,k-1) for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1. Note, changing the minus sign in the recurrence to a plus sign gives a recurrence for the square of the binomial coefficients - see A008459.
There is a relation between the e.g.f.'s of the rows and the diagonals of the triangle, namely, exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 3*x + 3*x^2/2! + x^3/3!) = 1 + 4*x + 10*x^2/2! + 20*x^3/3! + 35*x^4/4! + .... This property holds more generally for the Riordan arrays of the form ( f(x), x/(1 - x) ), where f(x) is an o.g.f. of the form 1 + f_1*x + f_2*x^2 + .... See, for example, A055248 and A106516.
Let P denote the present triangle. For k = 0,1,2,... define P(k) to be the lower unit triangular block array
/I_k 0\
\ 0 P/ having the k X k identity matrix I_k as the upper left block; in particular, P(0) = P. The infinite product P(0)*P(1)*P(2)*..., which is clearly well-defined, is equal to the triangle of Stirling numbers of the second kind A008277. The infinite product in the reverse order, that is, ...*P(2)*P(1)*P(0), is equal to the triangle of Stirling cycle numbers A130534. (End)
C(a+b,c) = Sum_{k=0..a} C(a,k)*C(b,b-c+k). This is a generalization of equation 1 from section 4.2.5 of the Prudnikov et al. reference, for a=b=c=n: C(2*n,n) = Sum_{k=0..n} C(n,k)^2. See Links section for animation of new formula. - Hermann Stamm-Wilbrandt, Aug 26 2015
The row polynomials of the Pascal matrix P(n,x) = (1+x)^n are related to the Bernoulli polynomials Br(n,x) and their umbral compositional inverses Bv(n,x) by the umbral relation P(n,x) = (-Br(.,-Bv(.,x)))^n = (-1)^n Br(n,-Bv(.,x)), which translates into the matrix relation P = M * Br * M * Bv, where P is the Pascal matrix, M is the diagonal matrix diag(1,-1,1,-1,...), Br is the matrix for the coefficients of the Bernoulli polynomials, and Bv that for the umbral inverse polynomials defined umbrally by Br(n,Bv(.,x)) = x^n = Bv(n,Br(.,x)). Note M = M^(-1). - Tom Copeland, Sep 05 2015
1/(1-x)^k = (r(x) * r(x^2) * r(x^4) * ...) where r(x) = (1+x)^k. - Gary W. Adamson, Oct 17 2016
Boas-Buck type recurrence for column k for Riordan arrays (see the Aug 10 2017 remark in A046521, also for the reference) with the Boas-Buck sequence b(n) = {repeat(1)}. T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} T(j, k), for n >= 1, with T(n, n) = 1. This reduces, with T(n, k) = binomial(n, k), to a known binomial identity (e.g, Graham et al. p. 161). - Wolfdieter Lang, Nov 12 2018
C((p-1)/a, b) == (-1)^b * fact_a(a*b-a+1)/fact_a(a*b) (mod p), where fact_n denotes the n-th multifactorial, a divides p-1, and the denominator of the fraction on the right side of the equation represents the modular inverse. - Isaac Saffold, Jan 07 2019
C(n,k-1) = A325002(n,k) - [k==n+1] = (A325002(n,k) + A325003(n,k)) / 2 = [k==n+1] + A325003(n,k). - Robert A. Russell, Oct 20 2020
From Hermann Stamm-Wilbrandt, May 13 2021: (Start)
Binomial sums are Fibonacci numbers A000045:
Sum_{k=0..n} C(n + k, 2*k + 1) = F(2*n).
Sum_{k=0..n} C(n + k, 2*k) = F(2*n + 1). (End)
C(n,k) = Sum_{i=0..k} A000108(i) * C(n-2i-1, k-i), for 0 <= k <= floor(n/2)-1. - Tushar Bansal, May 17 2025
Extensions
Checked all links, deleted 8 that seemed lost forever and were probably not of great importance. - N. J. A. Sloane, May 08 2018
A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1
Comments
Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
Examples
The initial rows of the triangle are: [1] 1 [2] 1, 1 [3] 1, 3, 1 [4] 1, 6, 6, 1 [5] 1, 10, 20, 10, 1 [6] 1, 15, 50, 50, 15, 1 [7] 1, 21, 105, 175, 105, 21, 1 [8] 1, 28, 196, 490, 490, 196, 28, 1 [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1; ... For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions. Example of umbral representation: A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1), so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1} = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1). First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011 Row polynomials and diagonal sequences of A103371: n = 4, P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
References
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
- P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
- T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
- T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).
Links
- T. D. Noe, Rows n=1..100 of triangle, flattened
- M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- Jarod Alper and Rowan Rowlands, Syzygies of the apolar ideals of the determinant and permanent, arXiv:1709.09286 [math.AC], 2017.
- C. Athanasiadis and C. Savvidou, The local h-vector of the cluster subdivision of a simplex, arXiv:1204.0362 [math.CO], 2012, p. 8, Lemma 2.4 A_n. [_Tom Copeland_, Oct 19 2014]
- Arvind Ayyer, Matthieu Josuat-Vergès, and Sanjay Ramassamy, Extensions of partial cyclic orders and consecutive coordinate polytopes, arXiv:1803.10351 [math.CO], 2018.
- Axel Bacher, Antonio Bernini, Luca Ferrari, Benjamin Gunby, Renzo Pinzani, and Julian West, The Dyck pattern poset, Discrete Math. 321 (2014), 12--23. MR3154009.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 2.
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 5.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
- M. Barnabei, F. Bonetti, and M. Silmbani, Two Permutation Classes Enumerated by the Central Binomial Coefficients, J. Int. Seq. 16 (2013) #13.3.8.
- Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
- C. Bean, M. Tannock, and H. Ulfarsson, Pattern avoiding permutations and independent sets in graphs, arXiv:1512.08155 [math.CO], 2015.
- S. Benchekroun and P. Moszkowski, A bijective proof of an enumerative property of legal bracketings Discrete Math. 176 (1997), no. 1-3, 273-277.
- Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- A. Bernini, L. Ferrari, R. Pinzani, and J. West, The Dyck pattern poset, arXiv:1303.3785 [math.CO], 2013.
- Aubrey Blecher, Charlotte Brennan, Arnold Knopfmacher, and Toufik Mansour, The perimeter of words, Discrete Mathematics, 340, no. 10 (2017): 2456-2465.
- Miklós Bóna and Bruce E. Sagan, On divisibility of Narayana numbers by primes, arXiv:math/0505382 [math.CO], 2005.
- Miklós Bóna and Bruce E. Sagan, On Divisibility of Narayana Numbers by Primes, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.4.
- N. Borie, Combinatorics of simple marked mesh patterns in 132-avoiding permutations, arXiv:1311.6292 [math.CO], 2013.
- J. M. Borwein, A short walk can be beautiful, 2015.
- Jonathan M. Borwein, Armin Straub, and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
- Jasper Bown, Peter Kagey, Alan Kappler, Michael E. Orrison, and Jayden Thadani, Preference-restricted parking functions, arXiv:2507.11701 [math.CO], 2025. See p. 16.
- Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
- Alexander Burstein, Distribution of peak heights modulo k and double descents on k-Dyck paths, arXiv:2009.00760 [math.CO], 2020.
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 12.
- D. Callan, T. Mansour, and M. Shattuck, Restricted ascent sequences and Catalan numbers, arXiv:1403.6933 [math.CO], 2014.
- L. Carlitz, and John Riordan, Enumeration of some two-line arrays by extent. J. Combinatorial Theory Ser. A 10 1971 271--283. MR0274301(43 #66). (Coefficients of the polynomials A_n(z) defined in (3.9)).
- Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
- Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, Linear Algebra and its Applications, Volume 471, 15 April 2015, Pages 383-393.
- Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, arXiv:1601.05645 [math.CO], 2016.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 7.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 12.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- R. De Castro, A. L. Ramírez, and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
- Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
- Yun Ding and Rosena R. X. Du, Counting Humps in Motzkin paths, arXiv:1109.2661 [math.CO], 2011.
- T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
- T. Doslic, D. Svrtan, and D. Veljan, Enumerative aspects of secondary structures, Discr. Math., 285 (2004), 67-82.
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2.
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch, Toggling, rowmotion, and homomesy on interval-closed sets, arXiv:2307.08520 [math.CO], 2023.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 18.
- A. España, X. Leoncini, and E. Ugalde, Combinatorics of the paths towards synchronization, arXiv:2205.05948 [math.DS], 2022.
- L. Ferrari and E. Munarini, Enumeration of Edges in Some Lattices of Paths, J. Int. Seq. 17 (2014) #14.1.5.
- FindStat - Combinatorial Statistic Finder, The number of peaks of a Dyck path, The number of double rises of a Dyck path, The number of valleys of a Dyck path, The number of left oriented leafs except the first one of a binary tree, The number of left tunnels of a Dyck path.
- T. A. Fisher, A Caldero-Chapoton map depending on a torsion class, arXiv:1510.07484 [math.RT], 2015-2016.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 182.
- S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004.
- Alessandra Frabetti, Simplicial properties of the set of planar binary trees, Journal of Algebraic Combinatorics 13, 41-65 (2001).
- Samuele Giraudo, Intervals of balanced binary trees in the Tamari lattice, arXiv:1107.3472 [math.CO], 2011.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- R. L. Graham and J. Riordan, The solution of a certain recurrence, Amer. Math. Monthly 73, 1966, pp. 604-608.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Kevin G. Hare and Ghislain McKay, Some properties of even moments of uniform random walks, arXiv:1506.01313 [math.CO], 2015.
- F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
- H. E. Hoggatt, Jr., Triangular Numbers, Fibonacci Quarterly 12 (Oct. 1974), 221-230.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv:1208.1052 [math.CO], 2012.
- Matthieu Josuat-Verges, A q-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J 46, 483-507 (2018); arXiv preprint, 2016.
- S. Kamioka, Laurent biorthogonal polynomials, q-Narayana polynomials and domino tilings of the Aztec diamonds, arXiv:1309.0268 [math.CO], 2013.
- Thomas Koshy, Illustration of triangle with dark color for odd number, light for even number [Although the illustration says "Applet", this is simply a plain jpeg file]
- Vladimir Kostov and Boris Shapiro, Narayana numbers and Schur-Szego composition, arXiv:0804.1028 [math.CA], 2008.
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
- G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- G. Kreweras, and P. Moszkowski, A new enumerative property of the Narayana numbers, Journal of statistical planning and inference 14.1 (1986): 63-67.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- A. Laradji and A. Umar, Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8.
- A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 16.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 26-27.
- P. A. MacMahon, Combinatory analysis.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
- Toufik Mansour and Reza Rastegar, On typical triangulations of a convex n-gon, arXiv:1911.04025 [math.CO], 2019.
- Toufik Mansour, Reza Rastegar, Alexander Roitershtein, and Gökhan Yıldırım, The longest increasing subsequence in involutions avoiding 3412 and another pattern, arXiv:2001.10030 [math.CO], 2020.
- Toufik Mansour and Mark Shattuck, Pattern-avoiding set partitions and Catalan numbers, Electronic Journal of Combinatorics, 18(2) (2012), #P34.
- Toufik Mansour and Gökhan Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, arXiv:1808.05430 [math.CO], 2018.
- A. Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, Volume 30 (2015), #7, pp. 106-117.
- MathOverflow, Narayana polynomials as numerator polynomials for Ehrhart series rational functions?, a MO question posed by Tom Copeland and answered by Richard Stanley, 2017.
- D. Merlini, R. Sprugnoli, and M. C. Verri, Waiting patterns for a printer, Discrete Applied Mathematics, Volume 144, Issue 3, 2004, Pages 359-373.
- A. Micheli and D. Rossin, Edit distance between unlabeled ordered trees, arXiv:math/0506538 [math.CO], 2005.
- T. V. Narayana, Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités, Comptes Rendus de l'Académie des Sciences Paris, Vol. 240 (1955), p. 1188-1189.
- J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some trialgebras, arXiv:math/0605061 [math.CO], 2006; Proc. Formal Power Series and Algebraic Combinatorics 2006 (San-Diego, 2006).
- J.-C. Novelli and J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions, Fundamenta Mathematicae 193 (2007), pp. 189-241; arXiv version, 0511200 [math.CO], 2005.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014. See Fig. 4.
- Judy-anne Osborn, Bi-banded paths, a bijection and the Narayana numbers, Australasian Journal of Combinatorics, Volume 48 (2010), Pages 243-252.
- T. K. Petersen, Chapter 2. Narayana numbers. In: Eulerian Numbers. Birkhäuser Basel, 2015. doi:10.1007/978-1-4939-3091-3.
- Vincent Pilaud and V. Pons, Permutrees, arXiv:1606.09643 [math.CO], 2016-2017.
- Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018. [Broken link]
- Dun Qiu and Jeffery Remmel, Patterns in words of ordered set partitions, arXiv:1804.07087 [math.CO], 2018.
- Marko Riedel, Mathematics Stack Exchange, Narayana numbers count unlabeled ordered rooted trees on n nodes having k leaves, proof.
- A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
- M. Sheppeard, Constructive motives and scattering 2013 (p. 41). [_Tom Copeland_, Oct 03 2014]
- R. P. Stanley, Theory and application of plane partitions, II. Studies in Appl. Math. 50 (1971), p. 259-279. DOI:10.1002/sapm1971503259. Thm. 18.1.
- R. A. Sulanke, Moments, Narayana numbers and the cut and paste for lattice paths
- R. A. Sulanke, Three-dimensional Narayana and Schröder numbers
- R. A. Sulanke, Catalan path statistics having the Narayana distribution, Discrete Math., vol. 180 (1998), 369--389. [Gives additional contexts where Narayana numbers appear. - _N. J. A. Sloane_, Nov 11 2020]
- A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
- W. Wang and T. Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See pp. 19-20.
- Wikipedia, Noncrossing partition
- L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.
- Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019), 44-46.
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
- J. Wuttke, The zig-zag walk with scattering and absorption on the real half line and in a lattice model, J. Phys. A 47 (2014), 215203, 1-9.
- F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
- James J. Y. Zhao, On the positive zeros of generalized Narayana polynomials related to the Boros-Moll polynomials, arXiv:2108.03590 [math.CO], 2021.
Crossrefs
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A243752.
Programs
-
GAP
Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
-
Haskell
a001263 n k = a001263_tabl !! (n-1) !! (k-1) a001263_row n = a001263_tabl !! (n-1) a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where dt us vs = zipWith (-) (zipWith (*) us (tail vs)) (zipWith (*) (tail us ++ [0]) (init vs)) -- Reinhard Zumkeller, Oct 10 2013
-
Magma
/* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
-
Maple
A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k; a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end: # Alternatively, as a (0,0)-based triangle: R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
-
Mathematica
T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k]; Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *) TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x]; Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *) aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *) T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
-
PARI
{a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
-
PARI
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
-
Sage
@CachedFunction def T(n, k): if k == n or k == 1: return 1 if k <= 0 or k > n: return 0 return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1))) for n in (1..9): print([T(n, k) for k in (1..n)]) # Peter Luschny, Oct 28 2014
Formula
a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)
Extensions
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
A056939 Array read by antidiagonals: number of antichains (or order ideals) in the poset 3*m*n or plane partitions with rows <= m, columns <= n and entries <= 3.
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 50, 20, 1, 1, 35, 175, 175, 35, 1, 1, 56, 490, 980, 490, 56, 1, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0
Comments
Triangle of generalized binomial coefficients (n,k)A342889.%20This%20array%20is%20the%20main%20subject%20of%20the%20long%20article%20by%20Felsner%20et%20al.%20(2011).%20-%20_N.%20J.%20A.%20Sloane">3; cf. A342889. This array is the main subject of the long article by Felsner et al. (2011). - _N. J. A. Sloane, Apr 03 2021
This triangle is mentioned by Hoggatt (1977). - N. J. A. Sloane, Mar 27 2021
Determinants of 3 X 3 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Also determinants of 3 X 3 arrays whose entries come from a single row: T(n,k) = det [C(n,k),C(n,k-1),C(n,k-2); C(n,k+1),C(n,k),C(n,k-1); C(n,k+2),C(n,k+1),C(n,k)]. - Peter Bala, May 10 2012
From Gary W. Adamson, Jul 10 2012: (Start)
The triangular view of this triangle is
1;
1, 1;
1, 4, 1;
1, 10, 10, 1;
1, 20, 50, 20, 1;
The n-th row of this triangle is generated by applying the ConvOffs transform to the first n terms of 1, 4, 10, 20, ... (A000292 without leading zero). See A214281 for a procedural definition of the transformation and search "ConvOffs" for more examples. (End)
Define polynomials p(n, x) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -x). If the triangle is extended by the diagonal 1, 0, 0,... on the right side the resulting (0, 0)-based triangle is T*(n, k) = [x^k] p(n, x). The polynomials evaluated at x = 1 gives the number of Baxter permutations of length n (see the formula given by Richard L. Ollerton in A001181). - Peter Luschny, Dec 28 2022
Examples
The initial rows of the array are: 1 1 1 1 1 1 ... 1 4 10 20 35 56 ... 1 10 50 175 490 1176 ... 1 20 175 980 4116 14112 ... 1 35 490 4116 24696 116424 ... 1 56 1176 14112 116424 731808 ... ... Considered as a triangle, the initial rows are: [1], [1, 1], [1, 4, 1], [1, 10, 10, 1], [1, 20, 50, 20, 1], [1, 35, 175, 175, 35, 1], [1, 56, 490, 980, 490, 56, 1], [1, 84, 1176, 4116, 4116, 1176, 84, 1], [1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1], [1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1], [1, 220, 9075, 108900, 457380, 731808, 457380, 108900, 9075, 220, 1] ...
References
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
Links
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- Johann Cigler, Some observations about Hankel determinants of the columns of Pascal triangle and related topics, arXiv:2202.07298 [math.CO], 2022.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- P. A. MacMahon, Combinatory analysis, section 495, 1916.
Crossrefs
Programs
-
Maple
# To get initial terms of the array - N. J. A. Sloane, Apr 20 2021 bb := (k,l) -> binomial(k+l,k)*binomial(k+l+1,k)*binomial(k+l+2,k)*2/((k+1)^2*(k+2)); for k from 0 to 8 do lprint([seq(bb(k,l),l=0..8)]); od:
-
Mathematica
t[n_, m_] = 2*Binomial[n, m]*Binomial[n + 1, m + 1]* Binomial[n + 2, m + 2]/((n - m + 1)^2*(n - m + 2)); Flatten[Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]] (* Roger L. Bagula, Jan 28 2009 *)
-
PARI
\\ cf. A359363 C=binomial; T(n,k)=if(n==0&&k==0,1,(C(n+1,k-1)*C(n+1,k)*C(n+1,k+1))/(C(n+1,1)*C(n+1,2))); for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024
Formula
Product_{k=0..2} binomial(n+m+k, m+k)/binomial(n+k, k) gives the array as a square.
T(n,m) = 2*binomial(n, m)*binomial(n+1, m+1)*binomial(n+2, m+2)/((n-m+1)^2*(n-m+2)). - Roger L. Bagula, Jan 28 2009
From Peter Bala, Oct 13 2011: (Start)
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k)*C(n+2,k+2)*C(n+3,k+1);
T(n,k) = 2/((n+1)*(n+2)*(n+3))*C(n+1,k+1)*C(n+2,k)*C(n+3,k+2). Cf. A197208.
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Define a(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is a(r,0)*a(r,n)/(a(r,k)*a(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
The column generating functions of the square array (starting at column 1) are 1/(1 - x)^4, (1 + 3*x + x^2)/(1 - x)^7, (1 + 10*x + 20*x^2 + 10*x^3 + x^4)/(1 - x)^10, ..., where the numerator polynomials are the row polynomials of A087647. See Barry p. 31. - Peter Bala, Oct 18 2023
A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516, 16818516, 3737448, 169884, 1287, 1
Offset: 0
Comments
Examples
The array starts: [1 1 1 1 1 1 1 ...] [1 6 21 56 126 252 462 ...] [1 21 196 1176 5292 19404 60984 ...] [1 56 1176 14112 116424 731808 3737448 ...] [1 126 5292 116424 1646568 16818516 133613766 ...] [1 252 19404 731808 16818516 267227532 3184461423 ...] [1 462 60984 3737448 133613766 3184461423 55197331332 ...] [...] Considered as a triangle, the initial rows are: 1; 1, 1; 1, 6, 1; 1, 21, 21, 1; 1, 56, 196, 56, 1; 1, 126, 1176, 1176, 126, 1; 1, 252, 5292, 14112, 5292, 252, 1; 1, 462, 19404, 116424, 116424, 19404, 462, 1; 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...
References
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- P. A. MacMahon, Combinatory Analysis, Section 495, 1916.
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
Links
- Seiichi Manyama, Rows n = 0..139 of triangle, flattened
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- P. A. MacMahon, Combinatory analysis.
- Index entries for sequences related to posets
Crossrefs
Antidiagonals sum to A005363 (Hoggatt sequence).
Programs
-
Magma
A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >; [A056941(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 14 2022
-
Mathematica
T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,4}]; Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 14 2022 *)
-
PARI
A056941(n,m)=prod(k=0,4,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ as an array \\ M. F. Hasler, Sep 26 2018
-
SageMath
def A056941(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..4)) flatten([[A056941(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 14 2022
Formula
From Peter Bala, Oct 13 2011: (Start)
A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.
g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
From Peter Bala, May 10 2012: (Start)
Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).
Also determinants of 5 X 5 arrays whose entries come from a single row:
det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)
From G. C. Greubel, Nov 14 2022: (Start)
T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).
Sum_{k=0..n} T(n, k) = A005363(n). (End)
Extensions
Edited by M. F. Hasler, Sep 26 2018
A056940 Number of antichains (or order ideals) in the poset 4*m*n or plane partitions with at most m rows and n columns and entries <= 4.
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 35, 105, 35, 1, 1, 70, 490, 490, 70, 1, 1, 126, 1764, 4116, 1764, 126, 1, 1, 210, 5292, 24696, 24696, 5292, 210, 1, 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1, 1, 495, 32670, 457380, 1646568, 1646568, 457380, 32670, 495, 1
Offset: 0
Comments
Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">4; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Determinants of 4 X 4 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005
Row sums are: {1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, ...}. - Roger L. Bagula, Mar 08 2010
Also determinants of 4x4 arrays whose entries come from a single row: T(n,k) = det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. - Peter Bala, May 10 2012
Examples
Triangle begins as: 1. 1, 1. 1, 5, 1. 1, 15, 15, 1. 1, 35, 105, 35, 1. 1, 70, 490, 490, 70, 1. 1, 126, 1764, 4116, 1764, 126, 1. 1, 210, 5292, 24696, 24696, 5292, 210, 1. 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1. - _Roger L. Bagula_, Mar 08 2010
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- P. A. MacMahon, Combinatory analysis, sect. 495, 1916.
- R. P. Stanley, Theory and application of plane partitions, II. Studies in Appl. Math. 50 (1971), p. 259-279. DOI:10.1002/sapm1971503259. Thm. 18.1.
- Index entries for sequences related to posets
Crossrefs
Programs
-
Mathematica
c[n_, q_] = Product[i + j, {j, 0, q}, {i, 1, n}]; T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]); Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Mar 08 2010 *)(* modified by G. C. Greubel, Apr 13 2019 *)
-
PARI
A056940(n,m)=prod(k=0,3,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ M. F. Hasler, Sep 26 2018
Formula
Product_{k=0..3} C(n+m+k, m+k)/C(n+k, k) gives the array as a square.
T(n,m,q) = c(n,q)/(c(m,q)*c(n-m,q)) with c(n,q) = Product_{i=1..n, j=0..q} (i + j), q = 3. - Roger L. Bagula, Mar 08 2010
From Peter Bala, Oct 13 2011: (Start)
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).
Extensions
Edited by M. F. Hasler, Sep 26 2018
A142465 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).
1, 1, 1, 1, 7, 1, 1, 28, 28, 1, 1, 84, 336, 84, 1, 1, 210, 2520, 2520, 210, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 924, 60984, 457380, 457380, 60984, 924, 1, 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1, 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1
Offset: 0
Comments
Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">6; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
The matrix inverse starts
1;
-1, 1;
6, -7, 1
-141, 168, -28, 1;
9911, -11844, 2016, -84, 1;
-1740901, 2081310, -355320, 15120, -210, 1. - R. J. Mathar, Mar 22 2013
Examples
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 28, 28, 1; 1, 84, 336, 84, 1; 1, 210, 2520, 2520, 210, 1; 1, 462, 13860, 41580, 13860, 462, 1; 1, 924, 60984, 457380, 457380, 60984, 924, 1; 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1; 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Magma
A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >; [A142465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
-
Maple
A142465 := proc(n,m) mul(binomial(n+i,m)/binomial(m+i,m),i=0..5) ; end proc; # R. J. Mathar, Mar 22 2013
-
Mathematica
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,5}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
PARI
T(n, k) = prod(j=0, 5, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
-
SageMath
def A142465(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..5)) flatten([[A142465(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
Extensions
Edited by the Associate Editors of the OEIS, May 17 2009
A142467 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..6} binomial(n+i,m)/binomial(m+i,m).
1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 120, 540, 120, 1, 1, 330, 4950, 4950, 330, 1, 1, 792, 32670, 108900, 32670, 792, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 3432, 736164, 16195608, 44537922, 16195608, 736164, 3432, 1
Offset: 0
Comments
Examples
Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 36, 36, 1; 1, 120, 540, 120, 1; 1, 330, 4950, 4950, 330, 1; 1, 792, 32670, 108900, 32670, 792, 1; 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1; 1, 3432, 736164, 16195608, 44537922, 16195608, 736164, 3432, 1; 1, 6435, 2760615, 131589315, 868489479, 868489479, 131589315, 2760615, 6435, 1;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Magma
[(&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
-
Mathematica
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,6}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 13 2022 *)
-
PARI
T(n, k) = prod(j=0, 6, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
-
SageMath
def A142467(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..6)) flatten([[A142467(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
Extensions
Edited by the Associate Editors of the OEIS, May 17 2009
A142468 An eight-products triangle sequence of coefficients: T(n,k) = binomial(n,k) * Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
1, 1, 1, 1, 9, 1, 1, 45, 45, 1, 1, 165, 825, 165, 1, 1, 495, 9075, 9075, 495, 1, 1, 1287, 70785, 259545, 70785, 1287, 1, 1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
Offset: 0
Comments
Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">8; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Row sums are {1, 2, 11, 92, 1157, 19142, 403691, 10312304, 311348897, 10826298914, 426196716090, ...}.
The general function is T(n,m)L = binomial(n,m)*Product{k=1..L} k!*(n + k)!/((m + k)!*(n - m + k)!) to give the quadratic row {1, L+2, 1}.
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 45, 45, 1; 1, 165, 825, 165, 1; 1, 495, 9075, 9075, 495, 1; 1, 1287, 70785, 259545, 70785, 1287, 1; 1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1; 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Magma
B:=Binomial; [B(n,k)*(&*[B(n+2*j, k+j)/B(n+2*j, j): j in [1..7]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Maple
b:= binomial; T:= (n, k) -> b(n, k)*mul(b(n+2*j, k+j)/b(n+2*j, j), j = 1..7); seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Mathematica
T[n_, k_]:= T[n,k]= With[{B=Binomial}, B[n,k]* Product[B[n+2*j,k+j]/B[n+2*j,j], {j, 7}] ]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 14 2019, Mar 03 2021 *)
-
PARI
T(n,k) = b=binomial; b(n,k)*prod(j=1,7, b(n+ 2*j,k+j)/b(n+2*j,j)); \\ G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Sage
b=binomial; def T(n, k): return b(n,k)*product(b(n+2*j,k+j)/b(n+2*j,j) for j in (1..7)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 14 2019, Mar 03 2021
Formula
T(n,k) = binomial(n,k)*Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
Extensions
Edited by G. C. Greubel, Nov 14 2019
A174109 Triangle read by rows: T(n, k) = c(n, q)/(c(k, q)*c(n-k, q)), where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q = 8.
1, 1, 1, 1, 10, 1, 1, 55, 55, 1, 1, 220, 1210, 220, 1, 1, 715, 15730, 15730, 715, 1, 1, 2002, 143143, 572572, 143143, 2002, 1, 1, 5005, 1002001, 13026013, 13026013, 1002001, 5005, 1, 1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1
Offset: 0
Comments
Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">9; cf. A342889. - _N. J. A. Sloane, Apr 03 2021
Row sums are: {1, 2, 12, 112, 1652, 32892, 862864, 28066040, 1105659414, 51177188350, 2734044648194, ...}.
These sequences (q >= 2) are a generalization of A056939.
Examples
Triangle begins as: 1. 1, 1. 1, 10, 1. 1, 55, 55, 1. 1, 220, 1210, 220, 1. 1, 715, 15730, 15730, 715, 1. 1, 2002, 143143, 572572, 143143, 2002, 1. 1, 5005, 1002001, 13026013, 13026013, 1002001, 5005, 1. 1, 11440, 5725720, 208416208, 677352676, 208416208, 5725720, 11440, 1.
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Mathematica
c[n_, q_]:= Product[i+j, {j, 0, q}, {i, 1, n}]; T[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]); Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2019 *) T[n_, k_, q_]:= (BarnesG[n+q+2]*BarnesG[k+1]*BarnesG[n-k+1]*BarnesG[q+2] )/(BarnesG[n-k+q+2]*BarnesG[k+q+2]*BarnesG[n+1]); Table[T[n, k, 8], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 13 2019 *)
-
PARI
{c(m,q) = prod(j=1,m, (j+q)!/(j-1)!)}; for(n=0,10, for(k=0,n, print1(c(n, 8)/(c(k, 8)*c(n-k, 8)), ", "))) \\ G. C. Greubel, Apr 13 2019
Formula
T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n, q) = Product_{j=1..n} (j+q)!/(j-1)! and q=8.
T(n, k, q) = (G(q+2)*G(k+1)*G(n+q+2)*G(n-k+1))/(G(n+1)*G(k+q+2)*G(n-k+q+ 2)), where G(x) is the Barnes G-function (see A000178). - G. C. Greubel, Apr 13 2019
Extensions
Edited by G. C. Greubel, Apr 13 2019
A342889 Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_10 (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 11, 1, 1, 66, 66, 1, 1, 286, 1716, 286, 1, 1, 1001, 26026, 26026, 1001, 1, 1, 3003, 273273, 1184183, 273273, 3003, 1, 1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1, 1, 19448, 14158144, 644195552, 2254684432, 644195552, 14158144, 19448, 1
Offset: 0
Examples
Triangle begins: [1], [1, 1], [1, 11, 1], [1, 66, 66, 1], [1, 286, 1716, 286, 1], [1, 1001, 26026, 26026, 1001, 1], [1, 3003, 273273, 1184183, 273273, 3003, 1], [1, 8008, 2186184, 33157124, 33157124, 2186184, 8008, 1], ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993.
- Richard L. Ollerton, Counting i-paths, Slides of talk presented at Thirteenth International Conference on Fibonacci Numbers and Their Applications, University of Patras (Greece), 2008.
- Richard L. Ollerton, Counting i-paths, Background notes for slides of talk presented at Thirteenth International Conference on Fibonacci Numbers and Their Applications, University of Patras (Greece), 2008.
- Richard L. Ollerton and Anthony G. Shannon, Extensions of generalized binomial coefficients, In: Howard F.T. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht, pp. 187-199.
- Richard L. Ollerton and Anthony G. Shannon, Further properties of generalized binomial coefficient k-extensions, Fibonacci Quarterly 43.2 (2005): 124-129.
- Daniel B. Shapiro, Divisibility Properties of Integer Sequences, arXiv:2302.02243 [math.NT], 2023. See also Integers, (2023) Vol. 23, #A57.
Crossrefs
Programs
-
Maple
# Generalized binomial coefficient: GBC := proc(n,k,m) local a,j; a := mul((binomial(n+m-j,m)/binomial(j+m-1,m)),j=1..k); end; # Returns first M rows of triangle: GBCT := proc(m,M) local a,b,n,k; global GBC; a:=[]; for n from 0 to M do b:=[seq(GBC(n,k,m),k=0..n)]; a:=[op(a),b]; od: a; end; GBCT(10,12);
-
Mathematica
f[n_, k_, m_] := Product[Binomial[n + m - j, m]/Binomial[j + m - 1, m], {j, k}]; Table[f[n, k, 10], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 25 2023 *)
-
PARI
f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m)); T(n, k) = f(n, k, 10); \\ Seiichi Manyama, Apr 02 2021
Formula
The generalized binomial coefficient (n,k)m = Product{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).
Comments