A342950 7-smooth numbers not divisible by 10: positive numbers whose prime divisors are all <= 7 but do not contain both 2 and 5.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 18, 21, 24, 25, 27, 28, 32, 35, 36, 42, 45, 48, 49, 54, 56, 63, 64, 72, 75, 81, 84, 96, 98, 105, 108, 112, 125, 126, 128, 135, 144, 147, 162, 168, 175, 189, 192, 196, 216, 224, 225, 243, 245, 252, 256, 288, 294, 315, 324
Offset: 1
Keywords
Examples
12 is in the sequence as all of its prime divisors are <= 7 and 12 is not divisible by 10.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10195
Programs
-
Mathematica
Select[Range@500,Max[First/@FactorInteger@#]<=7&&Mod[#,10]!=0&] (* Giorgos Kalogeropoulos, Mar 30 2021 *)
-
PARI
is(n) = if(n%10 == 0, return(0)); forprime(p = 2, 7, n/=p^valuation(n, p)); n==1
-
Python
A342950_list, n = [], 1 while n < 10**9: if n % 10: m = n for p in (2,3,5,7): q, r = divmod(m,p) while r == 0: m = q q, r = divmod(m,p) if m == 1: A342950_list.append(n) n += 1 # Chai Wah Wu, Mar 31 2021
-
Python
from sympy import integer_log def A342950(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,7)[0]+1): for j in range(integer_log(m:=x//7**i,3)[0]+1): c -= (k:=m//3**j).bit_length()+integer_log(k,5)[0] return c return bisection(f,n,n) # Chai Wah Wu, Sep 17 2024
-
Python
# faster for initial segment of sequence import heapq from itertools import islice def A342950gen(): # generator of terms v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7] while True: v = heapq.heappop(h) if v != oldv: yield v oldv = v for p in psmooth_primes: if not (p==2 and v%5==0) and not (p==5 and v&1==0): heapq.heappush(h, v*p) print(list(islice(A342950gen(), 65))) # Michael S. Branicky, Sep 17 2024
Formula
Sum_{n>=1} 1/a(n) = 63/16. - Amiram Eldar, Apr 01 2021