A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 1, 7, 5; 0, 1, 16, 37, 14; 0, 1, 30, 150, 176, 42; 0, 1, 50, 449, 1104, 794, 132; 0, 1, 77, 1113, 4795, 7077, 3473, 429; 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIb.
Crossrefs
Programs
-
Mathematica
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m; H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]]; CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
PARI
\\ here G(n, y) gives A082680 as g.f. G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)} H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))} { my(T=H(8)); for(n=1, #T, print(T[n])) }
Comments