A342994 a(n) = (1000^n - 1)*(220/333).
660, 660660, 660660660, 660660660660, 660660660660660, 660660660660660660, 660660660660660660660, 660660660660660660660660, 660660660660660660660660660, 660660660660660660660660660660, 660660660660660660660660660660660, 660660660660660660660660660660660660
Offset: 1
Examples
For a(1) = 660, we have 660^2 = 435600 = 6600 * 66 = 528 * 825 = A325150(2) (q = 435600, m = 660, k = 6600, t = 528). For a(2) = 660660, we have 660660^2 = 436471635600 = 6606600 * 66066 = 528528 * 825825 (q = 436471635600, m = 660660, k = 6606600, t = 528528). Generalization: for a(n) = 660...660, we have 660...660^2 = 660...6600 * 660...66 = 528...528 * 825...825.
Links
- Index entries for linear recurrences with constant coefficients, signature (1001,-1000).
Programs
-
Maple
E:= seq((1000^n - 1)*(220/333), n=1..11);
-
Mathematica
Table[(1000^n - 1)*(220/333), {n, 1, 11}] (* Amiram Eldar, Apr 28 2021 *)
-
PARI
Vec(660*x/((1000*x-1)*(x-1)) + O(x^13)) \\ Elmo R. Oliveira, Jul 01 2025
Formula
a(n) = (1000^n - 1)*(220/333).
G.f.: 660*x/(1 - 1001*x + 1000*x^2). - Stefano Spezia, Apr 28 2021
a(n) = 1001*a(n-1) - 1000*a(n-2). - Wesley Ivan Hurt, Apr 28 2021
E.g.f.: 220*exp(x)*(-1 + exp(999*x))/333. - Elmo R. Oliveira, Jul 01 2025
Comments