A343018 a(n) is the smallest number m such that tau(m+1) = tau(m) + n.
2, 1, 5, 49, 11, 35, 23, 399, 47, 1849, 59, 143, 119, 1599, 167, 575, 179, 1295, 239, 4355, 629, 2303, 359, 899, 959, 9215, 1007, 39999, 719, 20735, 839, 5183, 1799, 46655, 1259, 36863, 1679, 7055, 3023, 986049, 2879, 3599, 6479, 82943, 2519, 193599, 3359, 207935
Offset: 0
Keywords
Examples
For n = 3; a(3) = 49 because 49 is the smallest number such that tau(50) = 6 = tau(49) + 3 = 3 + 3.
Links
- Robert Israel, Table of n, a(n) for n = 0..188
Programs
-
Magma
Ax:=func
; [Ax(n): n in [0..50]]; -
Maple
N:= 60: # for a(0)..a(N) V:= Array(0..N): count:=0: t:= numtheory:-tau(1): for m from 1 while count < N+1 do s:= numtheory:-tau(m+1); v:= s - t; if v >= 0 and v <= N and V[v] = 0 then count:= count+1; V[v]:= m; fi; t:= s; od: convert(V, list); # Robert Israel, Jan 03 2025
-
Mathematica
d = Differences @ Table[DivisorSigma[0, n], {n, 1, 10^6}]; a[n_] := If[(p = Position[d, n]) != {}, p[[1, 1]], 0]; s = {}; n = 0; While[(a1 = a[n]) > 0, AppendTo[s, a1]; n++]; s (* Amiram Eldar, Apr 03 2021 *)
-
PARI
a(n) = my(m=1); while (numdiv(m+1) != numdiv(m) + n, m++); m; \\ Michel Marcus, Apr 03 2021
-
Python
from itertools import count, pairwise from sympy import divisor_count def A343018(n): return next(m+1 for m, t in enumerate(pairwise(map(divisor_count,count(1)))) if t[1] == t[0]+n) # Chai Wah Wu, Jul 25 2022
Formula
a(n) = A086550(n) - 1.
Comments