cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345699 Multiplicative with a(p) = a(p-1) and a(p^e) = a(p) + a(e) if e>1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 4, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 4, 2, 2, 4, 4, 1, 1, 4, 4, 2, 2, 3, 2, 3, 3, 4, 4, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 4, 4, 4, 3, 4, 2, 2, 2, 6, 3, 4, 4, 2, 6, 1, 2
Offset: 1

Views

Author

Keywords

Examples

			a(11)=a(10)=a(5)*a(2); a(2)=1; a(5)=a(4)=a(2)+a(2)=2; so a(11)=2.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; mul(`if`(i[2]=1,
          a(i[1]-1), a(i[1])+a(i[2])), i=ifactors(n)[2])
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 28 2021
  • Mathematica
    a[1]=1; a[p_,1]:= a[p-1]; a[p_, s_] := a[p, s] =  a[p] + a[s];
    a[n_]:=a[n]=Module[{aux=FactorInteger[n]},Product[a[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = a(f[k,1]-1); if (f[k,2] > 1, f[k,1] += a(f[k,2])); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jun 26 2021
Showing 1-1 of 1 results.