cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342902 a(n) is the smallest number that is the sum of n positive cubes in two ways.

Original entry on oeis.org

1729, 251, 219, 157, 158, 131, 132, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
Offset: 2

Views

Author

N. J. A. Sloane, Apr 03 2021

Keywords

Comments

This is r(n,3,2) in Alter's notation.

Examples

			a(2) = 1729 = 12^3 + 1^3 = 10^3 + 9^3 (the famous Hardy-Ramanujan number).
a(3) = 251 = 5^3 + 5^3 + 1^3 = 6^3 + 3^3 + 2^3.
		

Crossrefs

Formula

a(n) = n+63 for n >= 9.

A343082 a(n) is the smallest number that is the sum of n positive 4th powers in three ways.

Original entry on oeis.org

811538, 16578, 4225, 2676, 2677, 518, 519, 520, 521, 522, 523, 524, 525, 526, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307
Offset: 3

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,4,3) in Alter's notation.

Examples

			a(3) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
a(4) = 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4.
		

Crossrefs

Formula

a(n) = n + 255 for n >= 17.

A343083 a(n) is the smallest number that is the sum of n positive 5th powers in three ways.

Original entry on oeis.org

13124675, 696467, 84457, 52417, 52418, 8194, 8195, 8196, 8197, 8198, 8199, 8200, 8201, 8202, 8203, 8204, 7796, 7797, 7798, 7799, 7800, 7801, 7802, 7585, 7586, 7587, 7533, 7534, 7535, 7536, 7537, 4128, 4129, 4130, 4131, 4132, 4133, 4134, 4135, 4136, 4137, 4138, 4139, 4140, 4141, 4142, 4143, 4144, 4145, 4146, 4147, 4148, 4149, 4150, 4151, 4152, 4153, 4154, 4155, 4156, 4157, 2112
Offset: 5

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,5,3) in Alter's notation.

Examples

			a(5) = 13124675 = 1^5 + 9^5 + 10^5 + 20^5 + 25^5 = 2^5 + 5^5 + 12^5 +23^5 + 23^5 = 16^5 + 19^5 + 20^5 + 20^5 + 20^5.
a(6) = 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.
		

Crossrefs

Formula

a(n) = n + 2046 for n >= 66.

A343085 a(n) is the smallest number that is the sum of n positive cubes in four ways.

Original entry on oeis.org

13896, 1979, 1252, 626, 470, 256, 224, 225, 226, 227, 221, 222, 223, 203, 204, 205, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205
Offset: 3

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,3,4) in Alter's notation.

Examples

			a(3) = 13896 = 1^3 + 12^3 + 23^3 = 2^3 + 4^3 + 24^3 = 4^3 + 18^3 + 20^3 = 9^3 + 10^3 + 23^3.
a(4) = 1979 = 1^3 + 5^3 + 5^3 + 12^3 = 2^3 + 3^3 + 6^3 + 12^3 = 5^3 + 5^3 + 9^3 + 10^3 = 6^3 + 6^3 + 6^3 + 11^3.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{13896,1979,1252,626,470,256,224,225,226,227,221,222,223,203,204,205,171,172},60] (* Harvey P. Dale, Aug 06 2022 *)

Formula

a(n) = n + 152 for n >= 19.

A343080 a(n) is the smallest number that is the sum of n positive squares in three ways.

Original entry on oeis.org

325, 54, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 2

Views

Author

Sean A. Irvine, Apr 04 2021

Keywords

Comments

This is r(n,2,3) in Alter's notation.

Examples

			a(2) = 325 = 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2.
a(3) = 54 = 1^2 + 2^2 + 7^2 = 2^2 + 5^2 + 5^2 = 3^2 + 3^2 + 6^2.
		

Crossrefs

Formula

a(n) = n + 24 for n >= 4.
Showing 1-5 of 5 results.