A343085 a(n) is the smallest number that is the sum of n positive cubes in four ways.
13896, 1979, 1252, 626, 470, 256, 224, 225, 226, 227, 221, 222, 223, 203, 204, 205, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205
Offset: 3
Keywords
Examples
a(3) = 13896 = 1^3 + 12^3 + 23^3 = 2^3 + 4^3 + 24^3 = 4^3 + 18^3 + 20^3 = 9^3 + 10^3 + 23^3. a(4) = 1979 = 1^3 + 5^3 + 5^3 + 12^3 = 2^3 + 3^3 + 6^3 + 12^3 = 5^3 + 5^3 + 9^3 + 10^3 = 6^3 + 6^3 + 6^3 + 11^3.
Links
- R. Alter, Computations and generalizations on a remark of Ramanujan, pp. 182-196 of "Analytic Number Theory (Philadelphia, 1980)", ed. M. I. Knopp, Lect. Notes Math., Vol. 899, 1981. See Table 11, page 194.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
LinearRecurrence[{2,-1},{13896,1979,1252,626,470,256,224,225,226,227,221,222,223,203,204,205,171,172},60] (* Harvey P. Dale, Aug 06 2022 *)
Formula
a(n) = n + 152 for n >= 19.
Comments