A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 24, 140, 1, 0, 1, 5, 70, 4995, 16456, 1, 0, 1, 6, 165, 65824, 10763361, 8390720, 1, 0, 1, 7, 336, 489125, 1073758336, 211822552035, 17179934976, 1, 0, 1, 8, 616, 2521476, 38147070625, 281474993496064, 37523658921114744, 140737496748032, 1, 0
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 ----+--------------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 ... 2 | 0 1 6 24 70 165 ... 3 | 0 1 140 4995 65824 489125 ... 4 | 0 1 16456 10763361 1073758336 38147070625 ... 5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..860
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
Crossrefs
Programs
-
Mathematica
{{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Nov 30 2023 *)
-
PARI
T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4
Formula
T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.