A343132 a(n) is the quotient obtained when integer A343131(n) = k is divided by A061486(k).
1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 10, 1, 10, 1, 10, 3, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 100, 6, 5, 24, 11, 10, 1, 100, 9, 8, 42, 13, 13, 10, 1, 100, 43, 16, 22, 10, 1, 100, 30, 9, 2, 10, 1, 100, 4, 3, 10, 1, 100, 31, 6, 5, 10, 1, 100, 15, 10, 1, 100, 13, 11, 10, 1, 100, 10, 1, 1000
Offset: 1
Examples
For A343131(7) = 7, A061486(7) = 7 and a(7) = 7/7 = 1. For A343131(17) = 42, A061486(42) = 4+2 + 4*2 = 14 and a(17) = 42/14 = 3. For A343131(58) = 573, A061486(573) = 5+7+3 + 5*7+7*3+3*5 + 5*7*3 = 191 and a(58) = 573/191 = 3.
Links
- Eric Weisstein's World of Mathematics, Symmetric polynomial.
- Wikipedia, Elementary symmetric polynomial.
Programs
-
PARI
sympol(X, n) = my(s=0); forvec(i=vector(n, j, [1, #X]), s+=prod(k=1, n, X[i[k]]), 2); s ; f(n) = my(d=digits(n)); sum(k=1, #d, sympol(d, k)); lista(nn) = {for (n=1, nn, my(q = n/f(n)); if (denominator(q) == 1, print1(q, ", ")););} \\ Michel Marcus, Apr 08 2021
Comments