cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343161 Number of planar distributive lattices with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 14, 24, 42, 72, 127, 221, 390, 684, 1207, 2125, 3753, 6620, 11698, 20659, 36518, 64533, 114099, 201707, 356683, 630693, 1115370, 1972469, 3488489, 6169656, 10912003, 19299555, 34135099, 60374747, 106786342, 188875933, 334072759, 590889162, 1045136443
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2021, following a suggestion from Allan C. Wechsler

Keywords

Crossrefs

Programs

  • PARI
    V=concat(digits(1101010214296),[21,18,48,50,114,135,277,358,681]); P=List(1); for(n=2,#V,listput(P,V[2..n]*Colrev(P))); A343161=Vec(P) \\ M. F. Hasler, Jun 22 2021, using V[1..22] & formula from Bianca Newell
    
  • PARI
    \\ Needs S, V defined in A345734.
    seq(n)={Vec(x/(1 - x - Ser((S(n)+V(n))/2)))} \\ Andrew Howroyd, Jan 24 2023
  • Python
    v=[1,1,1,0,1,0,1,0,2,1,4,2,9,6,21,18,48,50,114,135,277,358,681]
    p=[1,1,1]
    for n in range(3,23):
        p=p+[sum(v[k]*p[n-k+1] for k in range(2,n+1))]
    p # Bianca Newell, Jun 22 2021
    

Formula

a(n) = Sum_{k=2..n} V(k)*a(n-k+1), where V(k) is the number of planar vertically indecomposable distributive lattices of size k. - Bianca Newell, Jun 22 2021
G.f.: x/(2 - B(x)/x) where B(x) is the g.f of A345734. - Andrew Howroyd, Jan 24 2023

Extensions

a(16)-a(22), computed with Python code, from Bianca Newell, Jun 22 2021
Terms a(23) and beyond from Andrew Howroyd, Jan 24 2023