A343187 Decimal expansion of Sum_{k>=1} 1/af(k), where af is the alternating factorial.
2, 2, 6, 4, 4, 0, 5, 5, 1, 7, 9, 3, 2, 5, 3, 1, 7, 0, 6, 2, 9, 3, 4, 5, 7, 9, 7, 0, 3, 3, 6, 2, 9, 5, 3, 8, 4, 3, 7, 7, 0, 7, 9, 1, 2, 7, 4, 3, 7, 4, 4, 8, 9, 0, 3, 0, 4, 9, 6, 6, 7, 1, 0, 6, 1, 9, 8, 7, 0, 9, 1, 4, 2, 5, 9, 8, 7, 8, 7, 6, 8, 1, 2, 7, 2, 4, 7, 9, 3, 0, 4, 0, 7, 7, 0, 9, 0, 2, 8, 9, 8, 2, 7, 9, 9
Offset: 1
Examples
2.2644055179325317... = 1/1 + 1/1 + 1/5 + 1/19 + 1/101 +....
Crossrefs
Cf. A005165 (alternating factorial).
Programs
-
Maple
evalf(sum(1/sum((-1)^(k - i)*i!, i = 1 .. k), k = 1 .. infinity));
-
PARI
f(n) = sum(k=0, n-1, (-1)^k*(n-k)!); \\ A005165 suminf(n=1, 1/f(n)) \\ Michel Marcus, Apr 07 2021