cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343204 Numerators of coefficients in expansion of Product_{k>=1} (1 + x^k)^(1/2).

Original entry on oeis.org

1, 1, 3, 13, 67, 239, 1031, 2501, 36579, 109915, 468653, 1043851, 9395751, 21232827, 97493519, 235880373, 7717800611, 17385733651, 82456426833, 175398844079, 1578297716013, 3634938193489, 15867173716609, 34517119775523, 619312307079687, 1363237700933583
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2021

Keywords

Examples

			1, 1/2, 3/8, 13/16, 67/128, 239/256, 1031/1024, 2501/2048, 36579/32768, 109915/65536, 468653/262144, 1043851/524288, ...
		

Crossrefs

Cf. A000009, A022567, A046161 (denominators), A061159, A098987.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d/2, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 12 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1 + x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator
    a[n_] := a[n] = If[n == 0, 1, (1/(2 n)) Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 25}] // Numerator

Formula

a(n) / A046161(n) ~ exp(sqrt(n/6)*Pi) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Apr 12 2021