cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343206 Numerators of Daehee numbers.

Original entry on oeis.org

1, -1, 2, -3, 24, -20, 720, -630, 4480, -36288, 3628800, -3326400, 479001600, -444787200, 5811886080, -81729648000, 20922789888000, -19760412672000, 6402373705728000, -6082255020441600, 115852476579840000, -2322315553259520000, 1124000727777607680000, -1077167364120207360000
Offset: 0

Views

Author

Michel Marcus, Apr 08 2021

Keywords

Examples

			1, -1/2, 2/3, -3/2, 24/5, -20, 720/7, -630, 4480, -36288, 3628800/11, -3326400, 479001600/13, -444787200, ...
		

Crossrefs

Cf. A008275 (Stirling1), A027641/A027642 (Bernoulli).
Cf. A014973 (denominators).

Programs

  • Mathematica
    a[n_]:=Numerator[(-1)^n*n!/(n+1)]; Array[a,24,0] (* Stefano Spezia, Jun 24 2024 *)
  • PARI
    a(n) = numerator(sum(i=0, n, stirling(n, i, 1)*bernfrac(i)));
    
  • PARI
    my(x='x+O('x^30), v=Vec(serlaplace(log(1+x)/x))); apply(numerator,v)
    
  • Python
    from sympy.functions.combinatorial.numbers import stirling, bernoulli
    def A343206(n): return sum(stirling(n,i,signed=True)*bernoulli(i) for i in range(n+1)).p # Chai Wah Wu, Apr 08 2021

Formula

D(n) = Sum_{i=0..n} Stirling1(n, i)*Bernoulli(i).
E.g.f. for D(n): log(1+x)/x.
D(n) = a(n)/A014973(n+1).
a(n) = numerator((-1)^n*n!/(n+1)). - Stefano Spezia, Jun 24 2024