cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349905 Arithmetic derivative of A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 1, 1, 6, 1, 8, 1, 27, 10, 10, 1, 39, 1, 14, 12, 108, 1, 55, 1, 51, 16, 16, 1, 162, 14, 20, 75, 75, 1, 71, 1, 405, 18, 22, 18, 240, 1, 26, 22, 216, 1, 103, 1, 87, 95, 32, 1, 621, 22, 91, 24, 111, 1, 350, 20, 324, 28, 34, 1, 318, 1, 40, 135, 1458, 24, 119, 1, 123, 34, 131, 1, 945, 1, 44, 119, 147, 24, 151, 1, 837
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2021

Keywords

Crossrefs

Cf. A003415, A003961, A026424 (positions of odd terms), A028260 (of even terms), A066829 (parity of a(n)).
Cf. A358760, A358761, A358762, A358763 for indices of terms that of the form 4k+j, for j=0..3, and A358750, A358751, A358752, A358753 for their characteristic functions.

Programs

  • Mathematica
    f1[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := d[s[n]]; Array[a, 100] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349905(n) = A003415(A003961(n));

Formula

a(n) = A003415(A003961(n)).

A344027 Arithmetic derivative applied to prime shift array: Square array A(n,k) = A003415(A246278(n,k)), read by falling antidiagonals.

Original entry on oeis.org

1, 4, 1, 5, 6, 1, 12, 8, 10, 1, 7, 27, 12, 14, 1, 16, 10, 75, 18, 22, 1, 9, 39, 16, 147, 24, 26, 1, 32, 14, 95, 20, 363, 30, 34, 1, 21, 108, 18, 203, 28, 507, 36, 38, 1, 24, 55, 500, 24, 407, 32, 867, 42, 46, 1, 13, 51, 119, 1372, 30, 611, 40, 1083, 52, 58, 1, 44, 16, 135, 275, 5324, 36, 935, 48, 1587, 60, 62, 1
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

For each column k, A343221(2*k) gives the least n (row number) where A(n,k) < A246278(n,k).
Each column is monotonic.

Examples

			The top left corner of the array:
    k = 1   2   3     4   5     6   7       8     9    10  11      12  13    14
   2k = 2   4   6     8  10    12  14      16    18    20  22      24  26    28
------+--------------------------------------------------------------------------
  n=1 | 1,  4,  5,   12,  7,   16,  9,     32,   21,   24, 13,     44, 15,   32,
    2 | 1,  6,  8,   27, 10,   39, 14,    108,   55,   51, 16,    162, 20,   75,
    3 | 1, 10, 12,   75, 16,   95, 18,    500,  119,  135, 22,    650, 24,  155,
    4 | 1, 14, 18,  147, 20,  203, 24,   1372,  275,  231, 26,   1960, 30,  287,
    5 | 1, 22, 24,  363, 28,  407, 30,   5324,  455,  495, 34,   6050, 40,  539,
    6 | 1, 26, 30,  507, 32,  611, 36,   8788,  731,  663, 42,  10816, 44,  767,
    7 | 1, 34, 36,  867, 40,  935, 46,  19652, 1007, 1071, 48,  21386, 54, 1275,
    8 | 1, 38, 42, 1083, 48, 1235, 50,  27436, 1403, 1463, 56,  31768, 60, 1539,
    9 | 1, 46, 52, 1587, 54, 1863, 60,  48668, 2175, 1955, 64,  58190, 66, 2231,
   10 | 1, 58, 60, 2523, 66, 2639, 70,  97556, 2759, 2987, 72, 102602, 76, 3219,
   11 | 1, 62, 68, 2883, 72, 3255, 74, 119164, 3663, 3503, 78, 136462, 84, 3627,
   12 | 1, 74, 78, 4107, 80, 4403, 84, 202612, 4715, 4551, 90, 219040, 96, 4847,
etc.
		

Crossrefs

Cf. A068719 (row 1).

Programs

  • PARI
    up_to = 91;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A344027sq(row,col) = A003415(A246278sq(row,col));
    A344027list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A344027sq(col,(a-(col-1))))); (v); };
    v344027 = A344027list(up_to);
    A344027(n) = v344027[n];

A343221 Number of iterations of x -> A003961(x) needed until A003415(x) < x, when starting from x=n, where A003415(x) gives the arithmetic derivative of x, and A003961 shifts its prime factorization one step towards the larger primes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2021

Keywords

Crossrefs

Cf. A083347 (positions of zeros).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A343221(n) = if(A003415(n)A343221(A003961(n)));
Showing 1-3 of 3 results.