cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A068719 Arithmetic derivative of even numbers: a(n) = n+2*A003415(n).

Original entry on oeis.org

1, 4, 5, 12, 7, 16, 9, 32, 21, 24, 13, 44, 15, 32, 31, 80, 19, 60, 21, 68, 41, 48, 25, 112, 45, 56, 81, 92, 31, 92, 33, 192, 61, 72, 59, 156, 39, 80, 71, 176, 43, 124, 45, 140, 123, 96, 49, 272, 77, 140, 91, 164, 55, 216, 87, 240, 101, 120
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2002

Keywords

Comments

Terms are either odd or multiples of 4. - Antti Karttunen, Jul 31 2022

Crossrefs

Second diagonal (without the initial 1) in A084890.
Row 1 of A344027.

Programs

  • Magma
    Ad:=func; [Ad(2*n): n in [1..60]]; // Bruno Berselli, Oct 22 2013
    
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; a[n_] := ad[2*n]; Array[a, 100] (* Amiram Eldar, Apr 11 2025 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A068719(n) = (n + 2*A003415(n)); \\ Antti Karttunen, Jul 31 2022

Formula

a(n) = A003415(A005843(n)).

A344026 Arithmetic derivative applied to the Doudna sequence: a(n) = A003415(A005940(1+n)).

Original entry on oeis.org

0, 1, 1, 4, 1, 5, 6, 12, 1, 7, 8, 16, 10, 21, 27, 32, 1, 9, 10, 24, 12, 31, 39, 44, 14, 45, 55, 60, 75, 81, 108, 80, 1, 13, 14, 32, 16, 41, 51, 68, 18, 59, 71, 92, 95, 123, 162, 112, 22, 77, 91, 140, 119, 185, 240, 156, 147, 275, 350, 216, 500, 297, 405, 192, 1, 15, 16, 48, 18, 61, 75, 92, 20, 87, 103, 124, 135, 165, 216
Offset: 0

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

Coincides with A344028 on Fibbinary numbers, A003714.

Crossrefs

Cf. A000079 (positions of ones), A003415, A003714, A005940.
Cf. also A344027, A344028, A344182.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A344026(n) = A003415(A005940(1+n));

Formula

a(2^n) = 1 for all n >= 0.

A343221 Number of iterations of x -> A003961(x) needed until A003415(x) < x, when starting from x=n, where A003415(x) gives the arithmetic derivative of x, and A003961 shifts its prime factorization one step towards the larger primes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2021

Keywords

Crossrefs

Cf. A083347 (positions of zeros).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A343221(n) = if(A003415(n)A343221(A003961(n)));

A343222 Number of iterations of x -> A003961(x) needed until A003415(x) <= x, when starting from x=n, where A003415(x) gives the arithmetic derivative of x, and A003961 shifts its prime factorization one step towards the larger primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 08 2021

Keywords

Crossrefs

Positions of zeros: Union of A051674 and A083347.
Cf. also A343221, A344027.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A343222(n) = if(A003415(n)<=n,0,1+A343222(A003961(n)));

A356155 The pi-based arithmetic derivative applied to prime shift array: Square array A(n,k) = A258851(A246278(n,k)), read by falling antidiagonals.

Original entry on oeis.org

1, 4, 2, 7, 12, 3, 12, 19, 30, 4, 11, 54, 41, 56, 5, 20, 26, 225, 79, 110, 6, 15, 87, 58, 588, 131, 156, 7, 32, 37, 310, 94, 1815, 193, 238, 8, 33, 216, 69, 861, 162, 3042, 269, 304, 9, 32, 140, 1500, 117, 2156, 218, 6069, 355, 414, 10, 21, 120, 427, 5488, 183, 3835, 314, 8664, 491, 580, 11, 52, 44, 455, 1254, 26620, 255, 6834, 422, 14283, 629, 682, 12
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2022

Keywords

Comments

Each column is strictly monotonic.

Examples

			The top left corner of the array:
   k =  1    2    3      4    5      6    7       8      9     10   11       12
  2k =  2    4    6      8   10     12   14      16     18     20   22       24
-----+--------------------------------------------------------------------------
n= 1 |  1,   4,   7,    12,  11,    20,  15,     32,    33,    32,  21,      52,
   2 |  2,  12,  19,    54,  26,    87,  37,    216,   140,   120,  44,     351,
   3 |  3,  30,  41,   225,  58,   310,  69,   1500,   427,   455,  86,    2075,
   4 |  4,  56,  79,   588,  94,   861, 117,   5488,  1254,  1022, 132,    8183,
   5 |  5, 110, 131,  1815, 162,  2156, 183,  26620,  2561,  2717, 214,   31581,
   6 |  6, 156, 193,  3042, 218,  3835, 255,  52728,  4828,  4316, 304,   67093,
   7 |  7, 238, 269,  6069, 314,  6834, 373, 137564,  7695,  8075, 404,  154615,
   8 |  8, 304, 355,  8664, 422, 10241, 457, 219488, 12098, 12426, 524,  261003,
   9 |  9, 414, 491, 14283, 532, 17296, 609, 438012, 20909, 18653, 668,  535877,
  10 | 10, 580, 629, 25230, 718, 27231, 787, 975560, 29388, 31552, 836, 1050409,
		

Crossrefs

Cf. A000027 (column 1), A097240 (column 3), A246278, A258851.
Cf. also A344027.

Programs

  • PARI
    up_to = 78;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851
    A356155sq(row,col) = A258851(A246278sq(row,col));
    A356155list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A356155sq(col,(a-(col-1))))); (v); };
    v356155 = A356155list(up_to);
    A356155(n) = v356155[n];

A353484 a(1) = 0; and for n > 1, a(n) = A165560(n) + a(A064989(n)), where A165560 is the parity of arithmetic derivative, and A064989 shifts the prime factorization of its argument one step toward lower primes.

Original entry on oeis.org

0, 1, 2, 0, 3, 2, 4, 0, 0, 3, 5, 1, 6, 4, 2, 0, 7, 1, 8, 2, 3, 5, 9, 1, 0, 6, 1, 3, 10, 3, 11, 0, 4, 7, 2, 0, 12, 8, 5, 2, 13, 4, 14, 4, 2, 9, 15, 1, 0, 1, 6, 5, 16, 1, 3, 3, 7, 10, 17, 2, 18, 11, 3, 0, 4, 5, 19, 6, 8, 3, 20, 0, 21, 12, 2, 7, 2, 6, 22, 2, 0, 13, 23, 3, 5, 14, 9, 4, 24, 2, 3, 8, 10, 15, 6, 1, 25
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2022

Keywords

Comments

a(n) counts the number of the terms of A235991 encountered [including also n itself if the arithmetic derivative of n is odd] when repeatedly prime shifting n down to 1.

Crossrefs

Cf. A003415, A064989, A165560, A235991, A353485 (positions of zeros).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353484(n) = if(1==n, 0, (A003415(n)%2) + A353484(A064989(n)));

Formula

For n >= 1, a(A000040(n)) = n, a(n^2) = 0.

A353515 The length of the shortest path from n to 1 when using the transitions x -> A003415(x) and x -> A003961(x), or -1 if no 1 can ever be reached from n.

Original entry on oeis.org

0, 1, 1, 4, 1, 2, 1, 7, 3, 2, 1, 6, 1, 4, 7, 8, 1, 4, 1, 6, 3, 2, 1, 7, 3, 6, 7, 8, 1, 2, 1, 10, 5, 2, 6, 5, 1, 4, 4, 6, 1, 2, 1, 6, 5, 4, 1, 9, 4, 5, 5, 8, 1, 6, 8, 8, 3, 2, 1, 4, 1, 6, 5, 10, 5, 2, 1, 5, 4, 2, 1, 8, 1, 5, 6, 6, 5, 2, 1, 9, 7, 2, 1, 4, 3, 5, 7, 8, 1, 5, 7, 7, 3, 5, 4, 9, 1, 6, 7, 6, 1, 3, 1, 7, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 23 2022

Keywords

Comments

This is a variant of A327969 that seems to be less in need of an escape clause. Note that enough prime shifts with A003961 will eventually transform every term of A100716 (which is a subsequence of A099309) to a term of A048103, and that A051903(A003961(n)) = A051903(n). See also the array A344027.
Records 0, 1, 4, 7, 8, 10, 12, 13, 14, 15, 16, 19, ... occur at 1, 2, 4, 8, 16, 32, 128, 256, 768, 1024, 2048, 4096, ..., etc.

Examples

			From n = 4, we can reach 1 with just four steps as A003961(4) = 9, A003415(9) = 6, A003415(6) = 5 and A003415(5) = 1, and because there are no shorter paths we have a(4) = 4.
From n = 8, we can reach 1 with seven steps, as A003415(8) = 12, A003961(12) = 45, A003415(45) = 39, A003961(39) = 85, A003415(85) = 22, A003415(22) = 13, A003415(13) = 1, and because there are no shorter paths we have a(8) = 7.
For n = 15, as A003415(15) = 8, we know that a(15) is at most a(8)+1, i.e., 8. But we can do better, as A003961(15) = 35, A003961(35) = 77, A003415(77) = 18, A003415(18) = 21, A003415(21) = 10, A003415(10) = 7, A003415(7) = 1, and because there are no shorter paths we have a(15) = 7.
From n = 49, we can reach 1 in four steps, as A003961(49) = 121, A003415(121) = 22, A003415(22) = 13, A003415(13) = 1. Note that this is less than A099307(49)-1, as it would take 5 steps to reach 1 if using the arithmetic derivative only, 49 -> 14 -> 9 -> 6 -> 5 -> 1.
		

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A353515(n) = if(1==n,0,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A003415(u); if(1==a, return(k)); if(isprime(a), return(k+1)); b = A003961(u); newxs = setunion([a],newxs); newxs = setunion([b],newxs)); xs = newxs));

Formula

a(1) = 0, a(p^p) = 1 + a(A003961(p^p)) for primes p, and for other numbers, a(n) = 1 + min(a(A003415(n)), a(A003961(n))).
a(p) = 1 for all primes p.
a(n) < A099307(n), unless A099307(n) = 0. [I.e., for all n in A099308]
Showing 1-8 of 8 results.