cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A327862 Numbers whose arithmetic derivative is of the form 4k+2, cf. A003415.

Original entry on oeis.org

9, 21, 25, 33, 49, 57, 65, 69, 77, 85, 93, 121, 129, 133, 135, 141, 145, 161, 169, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 289, 301, 305, 309, 315, 321, 329, 341, 351, 361, 365, 375, 377, 381, 393, 413, 417, 437, 445, 453, 459, 469, 473, 481, 485, 489, 493, 495, 497, 501, 505, 517, 529, 533, 537
Offset: 1

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

All terms are odd because the terms A068719 are either multiples of 4 or odd numbers.
Odd numbers k for which A064989(k) is one of the terms of A358762. - Antti Karttunen, Nov 30 2022
The second arithmetic derivative (A068346) of these numbers is odd. See A235991. - Antti Karttunen, Feb 06 2024

Crossrefs

Setwise difference A235992 \ A327864.
Setwise difference A046337 \ A360110.
Union of A369661 (k' has an even number of prime factors) and A369662 (k' has an odd number of prime factors).
Subsequences: A001248 (from its second term onward), A108181, A327978, A366890 (when sorted into ascending order), A368696, A368697.
Cf. A003415, A064989, A068346, A068719, A327863, A327865, A353495 (characteristic function).

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    isA327862(n) = (2==(A003415(n)%4));
    k=1; n=0; while(k<105, if(isA327862(n), print1(n, ", "); k++); n++);

A328234 Numbers whose arithmetic derivative (A003415) is a squarefree number (A005117) > 1.

Original entry on oeis.org

6, 9, 10, 18, 21, 22, 25, 26, 30, 33, 34, 38, 42, 45, 49, 57, 58, 62, 63, 66, 69, 70, 74, 75, 78, 82, 85, 90, 93, 98, 102, 105, 106, 110, 114, 117, 118, 121, 126, 129, 130, 133, 134, 142, 145, 147, 150, 153, 154, 161, 165, 166, 169, 170, 171, 174, 175, 177, 178, 182, 185, 186, 190, 195, 198, 201, 202, 205, 206, 209, 210, 213
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2019

Keywords

Comments

Sequence A328393 without primes.
No multiples of 4 because this is a subsequence of A048103.
All terms are cubefree, but being a cubefree non-multiple of 4 doesn't guarantee a membership, as for example 99 = 3^2 * 11 has an arithmetic derivative 11*(2*3) + 3^2 = 75 = 5^2 * 3, and thus is not included in this sequence. (See e.g., A328305).

Crossrefs

Cf. A328252 (nonsquarefree terms), A157037, A192192, A327978 (other subsequences).
Subsequence of following sequences: A004709, A048103, A328393.
Complement of the union of A000040 and A328303, i.e., complement of A328303, but without primes.
Cf. also A328248, A328250, A328305.

Programs

  • Mathematica
    arthD[n_]:=Module[{fi=FactorInteger[n]},n Total[(fi[[;;,2]]/fi[[;;,1]])]]; Select[Range[300],arthD[#]>1&&SquareFreeQ[arthD[#]]&] (* Harvey P. Dale, Dec 01 2024 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328234(n) = { my(u=A003415(n)); (u>1 && issquarefree(u)); };

A068720 Arithmetic derivative of squares: a(n) = 2*n*A003415(n).

Original entry on oeis.org

0, 4, 6, 32, 10, 60, 14, 192, 108, 140, 22, 384, 26, 252, 240, 1024, 34, 756, 38, 960, 420, 572, 46, 2112, 500, 780, 1458, 1792, 58, 1860, 62, 5120, 924, 1292, 840, 4320, 74, 1596, 1248, 5440, 82, 3444, 86, 4224, 3510, 2300, 94
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2002

Keywords

Crossrefs

Programs

  • Haskell
    a068720 = a003415 . a000290  -- Reinhard Zumkeller, Mar 18 2014
  • Magma
    Ad:=func; [0] cat [Ad(n^2): n in [2..50]]; // Bruno Berselli, Oct 22 2013
    
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[0] = ad[1] = 0; a[n_] := 2 * n * ad[n]; Array[a, 100] (* Amiram Eldar, Apr 11 2025 *)

Formula

a(n) = A003415(n^2) = 2*n*A003415(n).
a(n) = A235711(2*n). - Reinhard Zumkeller, Mar 18 2014

A344027 Arithmetic derivative applied to prime shift array: Square array A(n,k) = A003415(A246278(n,k)), read by falling antidiagonals.

Original entry on oeis.org

1, 4, 1, 5, 6, 1, 12, 8, 10, 1, 7, 27, 12, 14, 1, 16, 10, 75, 18, 22, 1, 9, 39, 16, 147, 24, 26, 1, 32, 14, 95, 20, 363, 30, 34, 1, 21, 108, 18, 203, 28, 507, 36, 38, 1, 24, 55, 500, 24, 407, 32, 867, 42, 46, 1, 13, 51, 119, 1372, 30, 611, 40, 1083, 52, 58, 1, 44, 16, 135, 275, 5324, 36, 935, 48, 1587, 60, 62, 1
Offset: 1

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

For each column k, A343221(2*k) gives the least n (row number) where A(n,k) < A246278(n,k).
Each column is monotonic.

Examples

			The top left corner of the array:
    k = 1   2   3     4   5     6   7       8     9    10  11      12  13    14
   2k = 2   4   6     8  10    12  14      16    18    20  22      24  26    28
------+--------------------------------------------------------------------------
  n=1 | 1,  4,  5,   12,  7,   16,  9,     32,   21,   24, 13,     44, 15,   32,
    2 | 1,  6,  8,   27, 10,   39, 14,    108,   55,   51, 16,    162, 20,   75,
    3 | 1, 10, 12,   75, 16,   95, 18,    500,  119,  135, 22,    650, 24,  155,
    4 | 1, 14, 18,  147, 20,  203, 24,   1372,  275,  231, 26,   1960, 30,  287,
    5 | 1, 22, 24,  363, 28,  407, 30,   5324,  455,  495, 34,   6050, 40,  539,
    6 | 1, 26, 30,  507, 32,  611, 36,   8788,  731,  663, 42,  10816, 44,  767,
    7 | 1, 34, 36,  867, 40,  935, 46,  19652, 1007, 1071, 48,  21386, 54, 1275,
    8 | 1, 38, 42, 1083, 48, 1235, 50,  27436, 1403, 1463, 56,  31768, 60, 1539,
    9 | 1, 46, 52, 1587, 54, 1863, 60,  48668, 2175, 1955, 64,  58190, 66, 2231,
   10 | 1, 58, 60, 2523, 66, 2639, 70,  97556, 2759, 2987, 72, 102602, 76, 3219,
   11 | 1, 62, 68, 2883, 72, 3255, 74, 119164, 3663, 3503, 78, 136462, 84, 3627,
   12 | 1, 74, 78, 4107, 80, 4403, 84, 202612, 4715, 4551, 90, 219040, 96, 4847,
etc.
		

Crossrefs

Cf. A068719 (row 1).

Programs

  • PARI
    up_to = 91;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A344027sq(row,col) = A003415(A246278sq(row,col));
    A344027list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A344027sq(col,(a-(col-1))))); (v); };
    v344027 = A344027list(up_to);
    A344027(n) = v344027[n];

A084890 Triangular array, read by rows: T(n,k) = arithmetic derivative of n*k, 1<=k<=n.

Original entry on oeis.org

0, 1, 4, 1, 5, 6, 4, 12, 16, 32, 1, 7, 8, 24, 10, 5, 16, 21, 44, 31, 60, 1, 9, 10, 32, 12, 41, 14, 12, 32, 44, 80, 68, 112, 92, 192, 6, 21, 27, 60, 39, 81, 51, 156, 108, 7, 24, 31, 68, 45, 92, 59, 176, 123, 140, 1, 13, 14, 48, 16, 61, 18, 140, 75, 87, 22, 16, 44, 60, 112, 92, 156, 124, 272, 216, 244, 188, 384
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2003

Keywords

Examples

			................. 0
.............. 1 ... 4
........... 1 ... 5 ... 6
........ 4 .. 12 .. 16 .. 32
..... 1 ... 7 ... 8 .. 24 .. 10
.. 5 .. 16 .. 21 .. 44 .. 31 .. 60
1 ... 9 .. 10 .. 32 .. 12 .. 41 .. 14.
		

Crossrefs

Programs

  • Mathematica
    ader[n_] := ader[n] =Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
    T[n_, k_] := ader[n k];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 21 2021 *)

Formula

T(n,k) = A003415(n*k) = n*A003415(k)+k*A003415(n), 1<=k<=n.
T(n,1) = A003415(n); n>1.
T(n,2) = A068719(n).
T(n,n) = A068720(n).

A260624 a(n) = arithmetic derivative of the n-th composite number.

Original entry on oeis.org

4, 5, 12, 6, 7, 16, 9, 8, 32, 21, 24, 10, 13, 44, 10, 15, 27, 32, 31, 80, 14, 19, 12, 60, 21, 16, 68, 41, 48, 39, 25, 112, 14, 45, 20, 56, 81, 16, 92, 22, 31, 92, 33, 51, 192, 18, 61, 72, 26, 59, 156, 39, 55, 80, 18, 71, 176, 108, 43, 124, 22, 45, 32, 140, 123
Offset: 1

Views

Author

Matthew Campbell, Oct 06 2015

Keywords

Examples

			The second composite number is 6. 6 = 2 * 3. 6' = 2*3' + 3*2' = 3 * 1 + 2 * 1 = 3 + 2 = 5, so a(2) = 5.
		

Crossrefs

Cf. A002808 (composite), A003415 (n').
Cf. A001787 ((2^n)'), A068719 ((2*n)'), A068720 ((n^2)'), A068721 ((n^3)').

Programs

  • Mathematica
    lim = 120; f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; f /@ Rest@ Complement[Range@ lim, Prime@ Range@ PrimePi@ lim] (* Michael De Vlieger, Oct 07 2015, after Michael Somos at A003415 *)
  • PARI
    forcomposite(n=1, 100, if((a(n) = local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))), print1(a(n)", "))); \\ Altug Alkan, Oct 06 2015

Formula

a(n) = A003415(A002808(n)).

Extensions

More terms from Altug Alkan, Oct 06 2015

A369052 a(n) = n - n'*2, where n' is the arithmetic derivative of n, A003415.

Original entry on oeis.org

0, 1, 0, 1, -4, 3, -4, 5, -16, -3, -4, 9, -20, 11, -4, -1, -48, 15, -24, 17, -28, 1, -4, 21, -64, 5, -4, -27, -36, 27, -32, 29, -128, 5, -4, 11, -84, 35, -4, 7, -96, 39, -40, 41, -52, -33, -4, 45, -176, 21, -40, 11, -60, 51, -108, 23, -128, 13, -4, 57, -124, 59, -4, -39, -320, 29, -56, 65, -76, 17, -48, 69, -240, 71
Offset: 0

Views

Author

Antti Karttunen, Jan 17 2024

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A369052(n) = (n-2*A003415(n));

Formula

a(n) = n - 2*A003415(n).
a(n) = -(A003415(n)+A168036(n)).

A369061 Numbers k such that k + k'*2 is equal to a partial sum of primorial numbers (a term of A143293), where k' stands for the arithmetic derivative of k, A003415.

Original entry on oeis.org

1, 7, 37, 99, 2557, 32587, 543097, 10242787, 232889539, 146710424885, 207263519017
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2024

Keywords

Comments

Numbers k such that A068719(k) = A143293(n), for some n >= 0.
Numbers k for which A276087(A068719(k)) is a prime.
All terms are odd.
Notably each of the terms a(2) .. a(9) map (in the same order) to A143293(2..9), but then k for A143293(10) = 6703028889 is missing, and a(10) and a(11) both map to A143293(11) = 207263519019.

Examples

			For 99, A068719(99) = 99 + 99'*2 = 99 + 75*2 = 249 = 1 + 2 + 6 + 30 + 210 = A143293(4), therefore 99 is included in this sequence.
For 2557, which is a prime, 2557 + 2557' * 2 = 2557+2 = 2559 = 1 + 2 + 6 + 30 + 210 + 2310 = A143293(5), therefore 2557 is included in this sequence.
		

Crossrefs

After the initial 1, the even terms of A328243 halved.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A068719(n) = (n+2*A003415(n));
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA369061(n) = (1==A276150(A276086(A068719(n))));
Showing 1-9 of 9 results.