A343307 a(n) is the number of self-avoiding paths connecting consecutive corners of an n X n triangular grid.
1, 2, 10, 108, 2726, 168724, 25637074, 9454069104, 8461610420420, 18438745892175008, 97929194419509169380, 1267379450261470833222676, 39964658780097197018058705552, 3071011528804416058638501563820092, 575150143830631835000028468717331605240
Offset: 1
Examples
For n = 3: - we have the following paths: . . . . . . . . o---o---o . . . . . . . . o . o o . o . / \ / \ / \ / \ . o o---o o o o o---o o . . . . . . . . o---o o---o o---o . / / / \ \ \ . o o---o o . o o---o o . . . o o o . / \ / \ / \ . o o o o o o . / / / \ \ \ . o o---o o . o o---o o - so a(3) = 10.
Links
- Rémy Sigrist, Python program for A343307
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
- Index entries for sequences related to walks
Programs
-
Python
# See Links section.
Extensions
a(14)-a(15) from Andrew Howroyd, Feb 04 2022
Comments