A343310 a(n) is the number of bilaterally symmetrical self-avoiding paths connecting consecutive corners of an n X n triangular grid.
1, 2, 4, 12, 50, 264, 2054, 22324, 377704, 9455172, 385118374, 23504746636, 2346325946460, 348814672315896, 84278783653480026, 30255270733134656280, 17646594353716082850430, 15321207204408662854455924, 21654163559101840305705453010, 45620955950222177660249163228084
Offset: 1
Examples
For n = 3: - we have the following bilaterally symmetrical paths: . . . . o . / \ . . . o o o---o o o . / \ / \ / \ / \ . o---o---o o o o o . o o . o - so a(3) = 4.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..25
- Rémy Sigrist, Illustrations of a(5) = 50
- Rémy Sigrist, PARI program for A343310
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
- Index entries for sequences related to walks
Crossrefs
Cf. A343307.
Programs
-
PARI
See Links section.
Formula
a(n) <= A343307(n).
Extensions
a(12)-a(13) from Martin Ehrenstein, May 02 2021
Terms a(14) and beyond from Andrew Howroyd, Feb 05 2022
Comments