cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343314 a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A063720).

Original entry on oeis.org

0, 0, 1, 1, 2, 7, 5, 16, 19, 39, 77, 103, 226, 334, 636, 1106, 1827, 3386, 5568, 10059, 17281, 29890, 52771, 90283, 159191, 274976, 479035, 835476, 1447278, 2528496, 4386143, 7640592, 13293308, 23106132, 40245277, 69946521, 121762316, 211791205, 368418674, 641125867
Offset: 0

Views

Author

Stefano Spezia, Apr 11 2021

Keywords

Comments

The nonnegative integers are displayed as in A063720.
Given the set S = {2, 3, 4, 5, 6, 7}, the function f defined in S as f(5) = 5 and f(s) = 1 elsewhere, a(n) is equal to the difference between the number b(n) of S-restricted f-weighted integer compositions of n with that of n-6, i.e., b(n-6). The latter one provides the number of all those excluded cases where a nonnegative integer is displayed with leading zeros. b(n) is calculated as the sum of polynomial coefficients or extended binomial coefficients (see Equation 3 in Eger) where the index of summation is positive and it covers the numbers of possible digits that can be displayed by n segments (see third formula).

Examples

			a(6) = 5 since 0, 14, 41, 77 and 111 are displayed by 6 segments.
    __                                   __   __
   |  |      | |__|      |__|    |         |    |      |    |    |
   |__|      |    |         |    |         |    |      |    |    |
    (0)       (14)          (41)            (77)          (111)
		

Crossrefs

Programs

  • Mathematica
    P[x_]:=x^2+x^3+x^4+5x^5+x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 40, 0]

Formula

G.f.: x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + 5*x^3 + x^4 + x^5)/(1 - x^2 - x^3 - x^4 - 5*x^5 - x^6 - x^7).
a(n) = a(n-2) + a(n-3) + a(n-4) + 5*a(n-5) + a(n-6) + a(n-7) for n > 13.
a(n) = b(n) - b(n-6), where b(n) = [x^n] Sum_{k=max(1,ceiling(n/7))..floor(n/2)} P(x)^k with P(x) = x^2 + x^3 + x^4 + 5*x^5 + x^6 + x^7.