A331529
a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A006942).
Original entry on oeis.org
0, 0, 1, 1, 2, 5, 7, 12, 19, 33, 59, 99, 170, 290, 496, 854, 1463, 2506, 4292, 7351, 12601, 21596, 37005, 63405, 108637, 186154, 318989, 546600, 936606, 1604874, 2749973, 4712146, 8074374, 13835600, 23707533, 40623267, 69608738, 119275933, 204381606, 350211711, 600094277
Offset: 0
a(5) = 5 since 2, 3, 5, 17 and 71 are displayed by 5 segments.
__ __ __ __ __
__| __| |__ | | | |
|__ __| __| | | | |
(2) (3) (5) (17) (71)
- Colin Barker, Table of n, a(n) for n = 0..1000
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,3,3,1).
- Index entries for sequences related to calculator display
- Index entries for sequences related to compositions
-
P[x_]:=x^2+x^3+x^4+3x^5+3x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k,{k,Max[1,Ceiling[n/7]],Floor[n/2]}],x,n];a[n_]:=b[n]-b[n-6]; Array[a,41,0]
-
concat([0,0], Vec(x^2*(1 - x)*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)*(1 + x^2 + 2*x^3 + x^4) / (1 - x^2 - x^3 - x^4 - 3*x^5 - 3*x^6 - x^7) + O(x^41))) \\ Colin Barker, Jan 20 2020
A331530
a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A010371).
Original entry on oeis.org
0, 0, 1, 0, 3, 3, 8, 7, 16, 23, 48, 70, 125, 192, 345, 561, 972, 1578, 2683, 4436, 7537, 12536, 21114, 35163, 59123, 98837, 166006, 277650, 465619, 779296, 1306674, 2188248, 3667717, 6142653, 10293460, 17242678, 28892956, 48402553, 81099234, 135863965, 227636213
Offset: 0
a(6) = 8 since 0, 6, 9, 14, 17, 41, 71, 111 are displayed by 6 segments.
__ __ __
| | |__ |__| | |__|
|__| |__| __| | |
(0) (6) (9) (14)
__ __
| | | |__| | | | | | | |
| | | | | | | | |
(17) (41) (71) (111)
- Colin Barker, Table of n, a(n) for n = 0..1000
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,3,3,1).
- Index entries for sequences related to calculator display
- Index entries for sequences related to compositions
-
P[x_]:=x^2+2x^4+3x^5+3x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k,{k,Max[1,Ceiling[n/7]],Floor[n/2]}],x,n];a[n_]:=b[n]-b[n-6]; Array[a,41,0]
-
concat([0,0], Vec(x^2*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + 2*x^2 + 3*x^3 + 3*x^4 + x^5) / (1 - x^2 - 2*x^4 - 3*x^5 - 3*x^6 - x^7) + O(x^41))) \\ Colin Barker, Jan 20 2020
A343315
a(n) is the number of nonnegative integers that can be represented in a 7-segment display by using only n segments (version A277116).
Original entry on oeis.org
0, 0, 1, 1, 2, 6, 6, 14, 19, 36, 67, 103, 194, 315, 560, 971, 1651, 2895, 4933, 8581, 14798, 25515, 44165, 76067, 131563, 227034, 392032, 677152, 1168742, 2018769, 3485255, 6018422, 10392472, 17943750, 30985861, 53501944, 92385050, 159523542, 275451221, 475633952
Offset: 0
a(5) = 6 since 2, 3, 5, 9, 17 and 71 are displayed by 5 segments.
__ __ __ __ __ __
__| __| |__ |__| | | | |
|__ __| __| | | | | |
(2) (3) (5) (9) (17) (71)
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,4,2,1).
- Index entries for sequences related to calculator display
- Index entries for sequences related to compositions
-
P[x_]:=x^2+x^3+x^4+4x^5+2x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 40, 0]
A350177
a(n) is the number of nonnegative integers that can be represented by lighting only n segments on a 9-segment display, used by the Russian postal service.
Original entry on oeis.org
0, 0, 0, 2, 3, 2, 5, 13, 17, 22, 47, 86, 127, 211, 387, 645, 1044, 1794, 3086, 5135, 8608, 14674, 24805, 41631, 70322, 119069, 200768, 338429, 571845, 965823, 1629253, 2749904, 4643876, 7838862, 13229487, 22333638, 37704236, 63642469, 107427241, 181351098, 306133271
Offset: 0
a(6) = 5 since 0, 11, 17, 71 and 77 are displayed by 6 segments.
_ _ _ _ _
| | /| /| /| / / /| / /
|_| | | | | | | | |
(0) (11) (17) (71) (77)
- Steffen Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
- Wikipedia, Postal code template.
- Wikipedia, Postal codes in Russia.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,3,2,1,1).
- Index entries for sequences related to calculator display
- Index entries for sequences related to compositions
-
P[x_]:=2x^3+3x^4+2x^5+x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 41, 0]
A350439
a(n) is the number of integers that can be represented in a 7-segment display by using only n segments (version A063720).
Original entry on oeis.org
0, 0, 1, 2, 3, 9, 12, 20, 35, 58, 116, 180, 329, 560, 970, 1742, 2933, 5213, 8954, 15627, 27340, 47171, 82661, 143054, 249474, 434167, 754011, 1314511, 2282754, 3975774, 6914639, 12026735, 20933900, 36399440, 63351409, 110191798, 191708837, 333553521, 580209879
Offset: 0
a(7) = 20 since -111, -77, -41, -14, 8, 12, 13, 15, 16, 19, 21, 31, 47, 51, 61, 74, 91, 117, 171 and 711 are displayed by 7 segments.
__ __ __
__ | | | __ | | __ |__| | __ | |__| |__|
| | | | | | | | | |__|
(-111) (-77) (-41) (-14) (8)
__ __ __ __ __
| __| | __| | |__ | |__ | |__| __| |
| |__ | __| | __| | |__| | | |__ |
(12) (13) (15) (16) (19) (21)
__ __ __ __
__| | |__| | |__ | |__ | | |__|
__| | | | __| | |__| | | |
(31) (47) (51) (61) (74)
__ __ __ __
|__| | | | | | | | | | |
| | | | | | | | | | |
(91) (117) (171) (711)
-
P[x_]:=x^2+x^3+x^4+5x^5+x^6+x^7; c[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; b[n_]:=c[n]-c[n-6]; (* A343314 *)
a[n_]:=If[n!=7,b[n]+b[n-1],20];Array[a, 39, 0]
Showing 1-5 of 5 results.
Comments