A343331 Expansion of Product_{k>=1} (1 + x^k)^(10^(k-1)).
1, 1, 10, 110, 1145, 12045, 126070, 1319570, 13798710, 144217910, 1506406702, 15726571002, 164096557935, 1711386871635, 17839701265570, 185876723016390, 1935830424374840, 20152131324766520, 209696974024339610, 2181155691766631710, 22678274833738085501, 235704268837407670401
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1)*binomial(10^(i-1), j), j=0..n/i))) end: a:= n-> h(n$2): seq(a(n), n=0..21); # Alois P. Heinz, Apr 12 2021
-
Mathematica
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(10^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 10^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Formula
a(n) ~ exp(sqrt(2*n/5) - 1/20 - c/10) * 10^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (10^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
Comments