cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343386 Number of odd Motzkin n-paths, i.e., Motzkin n-paths with an odd number of up steps.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 20, 56, 168, 456, 1137, 2827, 7458, 20670, 57577, 157691, 427976, 1170552, 3248411, 9096497, 25505562, 71436182, 200338074, 564083786, 1595055520, 4522769520, 12842772295, 36514010301, 103995490758, 296794937626, 848620165860, 2430089817720
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Motzkin n-paths with an odd number of U-steps (see A001006). For example, there are 9 Motzkin 4-paths, of which six have one U-step each, namely: 00UD, 0U0D, 0UD0, U00D, U0D0, and UD00. So a(4) = 6.
Number of Motzkin n-paths that, after removing the horizontal steps, are converted to Dyck (2m)-paths, where 2m <= n and m is odd (see A024492).

Examples

			G.f. = x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 56*x^7 + 168*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := ((n - 1) n HypergeometricPFQ[{1/2 - n/4, 3/4 - n/4, 1 - n/4, 5/4 - n/4}, {3/2, 3/2, 2}, 16])/2;
    Table[a[n], {n, 0, 31}] (* Peter Luschny, Sep 24 2021 *)
  • Python
    M = [4, 9]; E = [1, 1, 1, 1, 3];
    A343386 = [0, 0, 1, 3, 6]
    for n in range(5, 801):
        M.append(((2*n+1)*M[1]+(3*n-3)*M[0])//(n+2))
        E.append(((5*n**2+n-3)*E[4] - (10*n**2-16*n+3)*E[3]
          + (10*n**2-34*n+27)*E[2] + (11*n-5)*(n-3)*E[1]
          - 15*(n-3)*(n-4)*E[0]) // (n*n+2*n))
        A343386.append(M[-1] - E[-1])
        M.pop(0); E.pop(0)

Formula

a(n) = Sum_{k=0..n} binomial(n, 4*k+2) * A000108(2*k+1).
a(n) = A001006(n) - A107587(n).
G.f.: A(x) = (2 - 2*x - sqrt(1-2*x-3*x^2) - sqrt(1-2*x+5*x^2))/(4*x^2).
G.f. A(x) satisfies A(x) = x*A(x) + x^2*A(x)^2 + x^2*B(x)^2 where B(x) is the g.f. of A107587.
a(n) = A107587(n) - A100223(n+2). - R. J. Mathar, Apr 16 2021
D-finite with recurrence: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0, n >= 5. - R. J. Mathar, Apr 17 2021
D-finite with recurrence: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0, n >= 4. - R. J. Mathar, Apr 17 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * (k mod 2). - Gennady Eremin, May 03 2021 [after Paul Barry (A107587)]
a(n) = ((n-1)*n*hypergeom([1/2-n/4, 3/4-n/4, 1-n/4, 5/4-n/4], [3/2, 3/2, 2], 16))/2. - Peter Luschny, Sep 24 2021
a(n) ~ 3^(n + 3/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 27 2024