A343386 Number of odd Motzkin n-paths, i.e., Motzkin n-paths with an odd number of up steps.
0, 0, 1, 3, 6, 10, 20, 56, 168, 456, 1137, 2827, 7458, 20670, 57577, 157691, 427976, 1170552, 3248411, 9096497, 25505562, 71436182, 200338074, 564083786, 1595055520, 4522769520, 12842772295, 36514010301, 103995490758, 296794937626, 848620165860, 2430089817720
Offset: 0
Examples
G.f. = x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 56*x^7 + 168*x^8 + ...
Links
- Gennady Eremin, Table of n, a(n) for n = 0..800
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
Programs
-
Mathematica
a[n_] := ((n - 1) n HypergeometricPFQ[{1/2 - n/4, 3/4 - n/4, 1 - n/4, 5/4 - n/4}, {3/2, 3/2, 2}, 16])/2; Table[a[n], {n, 0, 31}] (* Peter Luschny, Sep 24 2021 *)
-
Python
M = [4, 9]; E = [1, 1, 1, 1, 3]; A343386 = [0, 0, 1, 3, 6] for n in range(5, 801): M.append(((2*n+1)*M[1]+(3*n-3)*M[0])//(n+2)) E.append(((5*n**2+n-3)*E[4] - (10*n**2-16*n+3)*E[3] + (10*n**2-34*n+27)*E[2] + (11*n-5)*(n-3)*E[1] - 15*(n-3)*(n-4)*E[0]) // (n*n+2*n)) A343386.append(M[-1] - E[-1]) M.pop(0); E.pop(0)
Formula
a(n) = Sum_{k=0..n} binomial(n, 4*k+2) * A000108(2*k+1).
G.f.: A(x) = (2 - 2*x - sqrt(1-2*x-3*x^2) - sqrt(1-2*x+5*x^2))/(4*x^2).
G.f. A(x) satisfies A(x) = x*A(x) + x^2*A(x)^2 + x^2*B(x)^2 where B(x) is the g.f. of A107587.
D-finite with recurrence: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0, n >= 5. - R. J. Mathar, Apr 17 2021
D-finite with recurrence: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0, n >= 4. - R. J. Mathar, Apr 17 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * (k mod 2). - Gennady Eremin, May 03 2021 [after Paul Barry (A107587)]
a(n) = ((n-1)*n*hypergeom([1/2-n/4, 3/4-n/4, 1-n/4, 5/4-n/4], [3/2, 3/2, 2], 16))/2. - Peter Luschny, Sep 24 2021
a(n) ~ 3^(n + 3/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 27 2024
Comments