A343424 Numbers k such that sopfr((k-1)!) is divisible by k, where sopfr(k) = A001414(k) = sum of primes, with repetition, dividing k.
1, 2, 45, 53, 177, 436, 1239, 3651, 6463, 6869, 10753, 19450, 29721, 33289, 88907, 93682, 1137232, 1516121, 4361271, 9428534, 43778664, 74738670, 271442366, 775223371, 835126289, 1736463189, 3088442241, 5054888590, 11184483614, 16993011938, 30788570768, 33342871740
Offset: 1
Keywords
Examples
45 is a term as sopfr(44!) = 585 which is divisible by 45.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..35
Programs
-
Mathematica
sopfr[0] = sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; sum = 0; s = {}; Do[sum += sopfr[n]; If[Divisible[sum, n + 1], AppendTo[s, n + 1]], {n, 0, 10^6}]; s (* Amiram Eldar, May 06 2021 *)
-
PARI
sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414 isok(k) = !(sopfr((k-1)!) % k); \\ Michel Marcus, May 06 2021
Extensions
a(27) from Amiram Eldar, May 06 2021
a(28) and beyond from Martin Ehrenstein, May 16 2021
Comments