cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343428 G.f.: 1 + 1!*x/(1 + 2!*x/(1 + 3!*x/(1 + 4!*x/(1 + 5!*x/(1 + ...))))).

Original entry on oeis.org

1, 1, -2, 16, -416, 47104, -31623680, 151868796928, -5929687248674816, 2103645975156790263808, -7506342628191723555983065088, 295743482602620866090259230372134912, -140189608695401234244797733914829257462251520, 865523452956329002149153403380412177220307414830546944
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+(n-i+1)!*x/A); polcoef(A, n);

Formula

G.f.: 1/(Sum_{k>=0} A285380(k) * (-x)^k).

A343473 G.f.: 1 + (1*x)/(1 + (2*x)^2/(1 + (3*x)^3/(1 + (4*x)^4/(1 + (5*x)^5/(1 + ...))))).

Original entry on oeis.org

1, 1, 0, -4, 0, 16, 108, -64, -864, -2660, -22464, 33968, 272268, 1217152, 4629312, 68208188, -98077824, -1089798320, -5246016084, -32436365248, -180561473568, -3404617719332, 5203858765248, 55902314446832, 354805454664396, 2229923884913920
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+((n-i+1)*x)^(n-i+1)/A); polcoef(A, n);

A343429 G.f.: 1 + 1^2*x/(1 + 2^2*x/(1 + 3^2*x/(1 + 4^2*x/(1 + 5^2*x/(1 + ...))))).

Original entry on oeis.org

1, 1, -4, 52, -1252, 47380, -2589892, 193480948, -18967658404, 2364328255444, -365398042310020, 68588722144816564, -15372942045464127076, 4055513943597589455508, -1243968998818298201100868, 439009056263271003371155060, -176627099114433045240563153188, 80365037678138695452520237597012, -41059325231828016124174743746157316
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+(n-i+1)^2*x/A); polcoef(A, n);

Formula

G.f.: 1/(Sum_{k>=0} A028296(k) * x^k).
Showing 1-3 of 3 results.