cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343427 G.f.: 1 + 1^1*x/(1 + 2^2*x/(1 + 3^3*x/(1 + 4^4*x/(1 + 5^5*x/(1 + ...))))).

Original entry on oeis.org

1, 1, -4, 124, -31492, 95311228, -4353197274628, 3536438210329520764, -58773626061322570140840196, 22612364715316383254816814332673916, -224919094679732422549471022558879877877853188, 63900685360824803637692081638626416736937520172676174972
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+(n-i+1)^(n-i+1)*x/A); polcoef(A, n);

Formula

G.f.: 1/(Sum_{k>=0} A307084(k) * (-x)^k).

A343429 G.f.: 1 + 1^2*x/(1 + 2^2*x/(1 + 3^2*x/(1 + 4^2*x/(1 + 5^2*x/(1 + ...))))).

Original entry on oeis.org

1, 1, -4, 52, -1252, 47380, -2589892, 193480948, -18967658404, 2364328255444, -365398042310020, 68588722144816564, -15372942045464127076, 4055513943597589455508, -1243968998818298201100868, 439009056263271003371155060, -176627099114433045240563153188, 80365037678138695452520237597012, -41059325231828016124174743746157316
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+(n-i+1)^2*x/A); polcoef(A, n);

Formula

G.f.: 1/(Sum_{k>=0} A028296(k) * x^k).

A343472 G.f.: 1 + 1!*x/(1 + 2!*x^2/(1 + 3!*x^3/(1 + 4!*x^4/(1 + 5!*x^5/(1 + ...))))).

Original entry on oeis.org

1, 1, 0, -2, 0, 4, 12, -8, -48, -56, -144, 400, 1200, 1792, 960, 16864, -34560, -170816, -320064, -632960, -869376, -15780224, 30636288, 144493312, 360770304, 738095104, 2382729216, 6661606912, 81815537664, -152267942912, -883849860096, -2187970242560, -6499788165120
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+(n-i+1)!*x^(n-i+1)/A); polcoef(A, n);
Showing 1-3 of 3 results.