A343461 a(n) is the maximal number of regular n-gons that can be arranged around a vertex without overlapping.
6, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 3
Examples
For n = 5: arranging 3 regular pentagons around a vertex leaves a gap smaller than the internal angle of a regular pentagon, so a(5) = 3.
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Cf. A071279.
Programs
-
Magma
[Floor(2*n/(n-2)) : n in [3..100]]; // Wesley Ivan Hurt, Apr 19 2021
-
Mathematica
Table[Floor[2 n/(n - 2)], {n, 3, 100}] (* Wesley Ivan Hurt, Apr 19 2021 *)
-
PARI
a(n) = floor(n*(2/(n-2)))
Formula
a(n) = floor(2*n/(n-2)).
Extensions
Edited by Peter Munn, Mar 18 2025
Comments