A338665
a(n) is the number of preference profiles for n men and n women where every man prefers woman number 1 to woman number 2.
Original entry on oeis.org
4, 5832, 6879707136, 19349176320000000000, 303256405652583481344000000000000, 53311087345695615264200592956011315200000000000000, 190584865366582887488321066784947980317795794157526056960000000000000000
Offset: 2
When n = 2, we have exactly 1 way to arrange each man's profiles such that woman number 1 is ranked before woman number 2. Each woman's profile can be set in 2! = 2 ways, so the total number of preference profiles such that every man prefers woman number 1 to woman number 2 is 1^2 * 2^2 = 4.
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
A351781
a(n) = (n-1)^n*(n-1)!^n.
Original entry on oeis.org
0, 1, 64, 104976, 8153726976, 46656000000000000, 28079296819683655680000000, 2400095991902688012207233433600000000, 37800243186554601452585666030525214621696000000000
Offset: 1
Showing 1-3 of 3 results.
Comments