cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343485 Area of the convex hull around terdragon expansion level n, measured in unit triangles.

Original entry on oeis.org

0, 2, 8, 26, 86, 276, 856, 2586, 7826, 23628, 71128, 213546, 641246, 1925076, 5777416, 17333706, 52006586, 156031788, 468115048, 1404358266, 4213124006, 12639480276, 37918617976, 113755972026, 341268358946, 1023806051148, 3071419747768, 9214260306186
Offset: 0

Views

Author

Kevin Ryde, Apr 17 2021

Keywords

Comments

Expansion level n comprises the first 3^n segments of the curve.

Examples

			For n=1, the terdragon curve comprises 3 segments:
    @---@      Convex hull vertices are marked "@".
     \         They enclose an area of 2 unit triangles,
  @---@        so a(1) = 2.
.
For n=2, the terdragon curve comprises 9 segments:
    @---@
     \         Convex hull vertices are marked "@".
  @---*        They enclose an area of a(2) = 8
   \ / \       unit triangle equivalents.
    *---@
     \
  @---@
		

Crossrefs

Cf. A343486 (fractal hull area), A341029 (dragon curve hull area).

Programs

  • PARI
    my(h=[30,46,22,50]); a(n) = if(n<2,2*n, (29*3^n - h[n%4+1]*3^(n\2))\24);

Formula

For n>=2, a(n) = (29/24)*3^n - (h/12)*3^floor(n/2) - (c/8) where h = 15,23,11,25 and c = 5,3,1,3 according as n == 0,1,2,3 (mod 4) respectively.
a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 6*a(n-4) - 36*a(n-5) + 36*a(n-6) - 36*a(n-7) + 27*a(n-8), for n>=10.
G.f.: (2*x + 2*x^3 + 6*x^4 - 8*x^5 + 16*x^6 - 18*x^7 + 6*x^8 - 18*x^9) /( (1-x)*(1+x^2)*(1-9*x^4)*(1-3*x) ).
G.f.: (1/24)*( 16 + 16*x - 9/(1-x) - 6/(1+x^2) - (26+48*x)/(1-3*x^2) + (-4+2*x)/(1+3*x^2) + 29/(1-3*x) ).
Lim_{n->oo} a(n)/3^n = 29/24.

A343487 Decimal expansion of the perimeter of the convex hull around the terdragon fractal.

Original entry on oeis.org

2, 8, 1, 8, 8, 1, 4, 9, 2, 4, 8, 7, 0, 0, 6, 8, 8, 2, 0, 4, 6, 9, 7, 1, 6, 6, 8, 3, 1, 6, 1, 1, 2, 4, 6, 6, 3, 2, 4, 0, 3, 3, 0, 5, 3, 8, 2, 1, 8, 7, 2, 7, 1, 2, 6, 0, 9, 3, 1, 1, 1, 7, 4, 9, 1, 8, 6, 0, 2, 7, 5, 4, 4, 5, 9, 8, 4, 8, 5, 0, 5, 5, 4, 1, 7, 6, 5, 5, 3, 1, 5, 8, 0, 8, 4, 9, 5, 0, 1, 7, 1, 0, 3, 3, 3
Offset: 1

Views

Author

Kevin Ryde, Apr 17 2021

Keywords

Comments

The convex hull around the terdragon fractal has 14 sides and with unit length from curve start to end their lengths are four sqrt(3)/24 and two each 1/24, 1/8, sqrt(3)/8, 3/8, sqrt(37)/12. Their total is the perimeter.

Examples

			2.8188149248700688204697166831611246...
		

Crossrefs

Cf. A343486 (terdragon hull area), A341030 (dragon hull perimeter).

Programs

  • Mathematica
    RealDigits[(13+5*Sqrt[3]+2*Sqrt[37])/12,10,120][[1]] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    my(c=223+20*quadgen(3*37*4)); a_vector(len) = my(s=10^(len-1)); digits((13*s + sqrtint(floor(c*s^2))) \12);

Formula

Equals (13 + 5*sqrt(3) + 2*sqrt(37)) / 12.
Equals (13 + sqrt(223 + 20*sqrt(3*37))) / 12.
Largest root of ((12*x - 13)^2 - 223)^2 - 44400 = 0 (all its roots are real).
Showing 1-2 of 2 results.