cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343526 Number of divisors of n^7.

Original entry on oeis.org

1, 8, 8, 15, 8, 64, 8, 22, 15, 64, 8, 120, 8, 64, 64, 29, 8, 120, 8, 120, 64, 64, 8, 176, 15, 64, 22, 120, 8, 512, 8, 36, 64, 64, 64, 225, 8, 64, 64, 176, 8, 512, 8, 120, 120, 64, 8, 232, 15, 120, 64, 120, 8, 176, 64, 176, 64, 64, 8, 960, 8, 64, 120, 43, 64, 512, 8, 120, 64, 512, 8
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=7 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^7], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^7);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 7*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 7^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 7^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 6*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001015(n)).
Multiplicative with a(p^e) = 7*e+1.
a(n) = Sum_{d|n} 7^omega(d).
G.f.: Sum_{k>=1} 7^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 6/p^s). - Vaclav Kotesovec, Aug 19 2021