cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343529 Number of tilings of a 5 X n rectangle using n pentominoes of shapes P, X, Y.

Original entry on oeis.org

1, 0, 2, 4, 18, 36, 138, 334, 1066, 3096, 9490, 26826, 80468, 235718, 699056, 2055466, 6074498, 17857906, 52725190, 155445504, 458505084, 1351257730, 3984941402, 11748306100, 34643781158, 102144907886, 301179533022, 887996181502, 2618324249106, 7720149428450
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2021

Keywords

Examples

			a(2) = 2,        a(3) = 4:     a(5) = 36:
  .___.  .___.     ._____.       ._________.     ._________.
  |   |  |   |     |_.   |       |   |_.   |     |_. ._._| |
  | ._|  |_. |     | |___|       | ._| |___|     | |_| |_. |
  |_| |  | |_|     | ._| |       |_|_. ._| |     | |_. ._| |
  |   |  |   |     | |   | (4)   |   |_|   | (2) | ._|_| |_| (2)  ...
  |___|  |___|     |_|___|       |_____|___|     |_|_______|          .
.
a(4) = 18:
  .___.___.     .___.___.     ._._____.     ._______.
  |   |   |     |   |   |     | |_.   |     |___. ._|
  | ._|_. |     | ._| ._|     |   |___|     |   |_| |
  |_| | |_|     |_| |_| |     |___|   |     | ._|   |
  |   |   | (2) |   |   | (2) |   |_. | (2) |_| |___| (2)
  |___|___|     |___|___|     |_____|_|     |_______|
.
  ._______.     ._._____.     ._______.
  | |   ._|     | |_.   |     |___. ._|
  | |___| |     | ._|___|     |   |_| |
  | ._|_. |     | |_.   |     | ._|_. |
  |_|   | | (2) |_| |___| (4) |_|   | | (4)
  |_____|_|     |_______|     |_____|_|     .
		

Crossrefs

Formula

G.f.: (16*x^54 +32*x^53 -128*x^51 -80*x^50 +380*x^49 +540*x^48 +456*x^47 -1316*x^46 -28*x^45 +976*x^44 +6016*x^43 +3356*x^42 -1680*x^41 -5992*x^40 -919*x^39 -825*x^38 +5838*x^37 -12209*x^36 -14876*x^35 -17029*x^34 -15243*x^33 -13879*x^32 -8029*x^31 -17115*x^30 -3713*x^29 -6022*x^28 -110*x^27 +1321*x^26 -832*x^25 -212*x^24 +4478*x^23 -575*x^22 -808*x^21 -3929*x^20 -574*x^19 +314*x^18 -1001*x^17 -1354*x^16 -805*x^15 -493*x^14 -299*x^13 -229*x^12 -78*x^11 +177*x^10 -39*x^9 -50*x^8 -19*x^7 +13*x^6 +15*x^5 +6*x^4 +3*x^3 +2*x^2 -1) /
(144*x^54 +224*x^53 +224*x^52 -1024*x^51 -848*x^50 -2228*x^49 +5668*x^48 +4136*x^47 -11260*x^46 -13154*x^45 +8426*x^44 +34252*x^43 +24792*x^42 -56180*x^41 -47120*x^40 +7095*x^39 +61021*x^38 +36892*x^37 -48989*x^36 -41768*x^35 +68397*x^34 +7921*x^33 +9893*x^32 -30841*x^31 +15927*x^30 +54995*x^29 +5474*x^28 -24546*x^27 -1559*x^26 -11350*x^25 +6196*x^24 -2886*x^23 -761*x^22 -3634*x^21 -13769*x^20 -6060*x^19 +880*x^18 +1445*x^17 -702*x^16 -1515*x^15 -1843*x^14 -223*x^13 -511*x^12 +172*x^11 +399*x^10 -153*x^9 -198*x^8 -61*x^7 +19*x^6 +21*x^5 +16*x^4 +7*x^3 +4*x^2 -1).