cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343553 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n = n} gcd(x_1, x_2, ... , x_n).

Original entry on oeis.org

1, 3, 8, 26, 74, 287, 930, 3572, 12966, 49379, 184766, 710712, 2704168, 10427822, 40123208, 155289768, 601080406, 2334740919, 9075135318, 35352194658, 137846990678, 538302226835, 2104098963742, 8233721100024, 32247603765020, 126412458921072, 495918569262798
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Examples

			a(3) = gcd(1,1,3) + gcd(1,2,3) + gcd(1,3,3) + gcd(2,2,3) + gcd(2,3,3) + gcd(3,3,3) = 1 + 1 + 1 + 1 + 1 + 3 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[# + n - 2, n-1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-2, n-1));

Formula

a(n) = A343516(n,n-1).
a(n) = Sum_{d|n} phi(n/d) * binomial(d+n-2, n-1).
a(n) = [x^n] Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n - 2) / sqrt(Pi*n). - Vaclav Kotesovec, May 23 2021