cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A343516 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 9, 1, 7, 17, 26, 19, 15, 1, 8, 23, 42, 39, 35, 13, 1, 9, 30, 64, 74, 76, 34, 20, 1, 10, 38, 93, 130, 153, 90, 56, 21, 1, 11, 47, 130, 214, 287, 216, 152, 63, 27, 1, 12, 57, 176, 334, 506, 468, 379, 191, 86, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
Square array begins:
   1,  1,  1,   1,   1,   1,    1, ...
   3,  4,  5,   6,   7,   8,    9, ...
   5,  8, 12,  17,  23,  30,   38, ...
   8, 15, 26,  42,  64,  93,  130, ...
   9, 19, 39,  74, 130, 214,  334, ...
  15, 35, 76, 153, 287, 506,  846, ...
  13, 34, 90, 216, 468, 930, 1722, ...
		

Crossrefs

Columns k=1..7 give A018804, A309322, A309323, A343518, A343519, A343520, A343521.
Main diagonal gives A343517.
T(n,n-1) gives A343553.
Cf. A343510.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} phi(j) * x^j/(1 - x^j)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * binomial(d+k-1, k).

A156834 A156348 * A000010.

Original entry on oeis.org

1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, 63, 13, 56, 99, 89, 17, 154, 19, 269, 237, 132, 23, 509, 301, 182, 379, 783, 29, 1230, 31, 881, 813, 306, 2125, 2431, 37, 380, 1299, 4157, 41, 4822, 43, 3695, 6175, 552, 47, 8529, 5587, 6266, 2787
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime. Companion to A156833.

Examples

			a(4) = 5 = (1, 2, 0, 1) dot (1, 1, 2, 2) = (1 + 2 + 0 + 2), where row 4 of A156348 = (1, 2, 0, 1) and (1, 1, 2, 2) = the first 4 terms of Euler's phi function.
		

Crossrefs

Equals row sums of triangle A157030. [Gary W. Adamson, Feb 21 2009]

Programs

  • Maple
    A156834 := proc(n)
            add(A156348(n,k)*numtheory[phi](k),k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 2, #-1] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-2, d-1)); \\ Seiichi Manyama, Apr 22 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*(x/(1-x^k))^k)) \\ Seiichi Manyama, Apr 22 2021

Formula

Equals A156348 * A054525 * [1, 2, 3,...]; where A054525 = the inverse Mobius transform.
a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-2, d-1). - Seiichi Manyama, Apr 22 2021
G.f.: Sum_{k >= 1} phi(k) * (x/(1 - x^k))^k. - Seiichi Manyama, Apr 22 2021

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

A345230 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ..., x_n).

Original entry on oeis.org

0, 1, 4, 13, 44, 140, 512, 1782, 6652, 24682, 93599, 354341, 1359470, 5210328, 20098886, 77621774, 300797854, 1167164438, 4539201401, 17674941735, 68933414989, 269143872226, 1052114789548, 4116808923486, 16124224585644, 63205911146740, 247961982954952
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2021

Keywords

Crossrefs

Main diagonal of A345229.

Programs

  • Maple
    a:= n-> coeff(series((1/(1-x))* add(numtheory[phi](k)
             *x^k/(1-x^k)^n, k=1..n), x, n+1), x, n):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    a[n_] := Sum[DivisorSum[k, EulerPhi[k/#] * Binomial[n + # - 2, n - 1] &], {k, 1, n}]; Array[a, 30, 0] (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(k/d)*binomial(d+n-2, n-1)));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*binomial(n\k+n-1, n)); \\ Seiichi Manyama, Sep 13 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * binomial(d+n-2, n-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 11 2021
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+n-1,n). - Seiichi Manyama, Sep 13 2024
Showing 1-3 of 3 results.