cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345229 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ..., x_k).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 9, 10, 1, 6, 13, 17, 15, 1, 7, 18, 28, 26, 21, 1, 8, 24, 44, 47, 41, 28, 1, 9, 31, 66, 83, 82, 54, 36, 1, 10, 39, 95, 140, 159, 116, 74, 45, 1, 11, 48, 132, 225, 293, 249, 172, 95, 55, 1, 12, 58, 178, 346, 512, 509, 401, 235, 122, 66, 1, 13, 69, 234, 512, 852, 980, 888, 592, 321, 143, 78
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2021

Keywords

Examples

			G.f. of column 3: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^3.
Square array begins:
   1,  1,   1,   1,   1,   1,    1, ...
   3,  4,   5,   6,   7,   8,    9, ...
   6,  9,  13,  18,  24,  31,   39, ...
  10, 17,  28,  44,  66,  95,  132, ...
  15, 26,  47,  83, 140, 225,  346, ...
  21, 41,  82, 159, 293, 512,  852, ...
  28, 54, 116, 249, 509, 980, 1782, ...
		

Crossrefs

Columns k=1..4 give A000217, A272718, A344521, A344992.
Main diagonal gives A345230.

Programs

  • Maple
    T:= (n, k)-> coeff(series((1/(1-x))* add(numtheory[phi](j)
                 *x^j/(1-x^j)^k, j=1..n), x, n+1), x, n):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    T[n_, k_] := Sum[DivisorSum[j, EulerPhi[j/#] * Binomial[k + # - 2, k - 1] &], {j, 1, n}];  Table[T[k, n - k + 1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, eulerphi(j/d)*binomial(d+k-2, k-1)));
    
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(j)*binomial(n\j+k-1, k)); \\ Seiichi Manyama, Sep 13 2024

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} phi(j/d) * binomial(d+k-2, k-1).
T(n,k) = Sum_{j=1..n} phi(j) * binomial(floor(n/j)+k-1,k). - Seiichi Manyama, Sep 13 2024
Showing 1-1 of 1 results.