cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A157030 Triangle read by rows, A156834 * A054521.

Original entry on oeis.org

1, 2, 0, 2, 1, 0, 4, 0, 1, 0, 2, 1, 1, 1, 0, 8, 3, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 0, 10, 0, 5, 0, 1, 0, 1, 0, 8, 7, 0, 1, 1, 0, 1, 1, 0, 12, 5, 6, 5, 0, 0, 10, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 34, 10, 10, 0, 7, 0, 10, 0, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Feb 21 2009

Keywords

Comments

Left border = A157019: (1, 2, 2, 4, 2, 8, 2, 10,...).

Examples

			First few rows of the triangle =
1;
2, 0;
2, 1, 0;
4, 0, 1, 0;
2, 1, 1, 1, 0;
8, 3, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 0;
10, 0, 5, 0, 1, 0, 1, 0;
8, 7, 0, 1, 1, 0, 1, 1, 0;
12, 5, 6, 5, 0, 0, 10, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
34, 10, 10, 0, 7, 0, 1, 0, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
...
		

Crossrefs

Cf. A156834 (row sums), A054521.

Formula

Triangle read by rows, A156834 * A054521; as infinite lower triangular matrices.

A156348 Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 0, 4, 0, 0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 10, 10, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Feb 08 2009

Keywords

Comments

The rows of the Pascal triangle are here found as square root parabolas like in the plots at www.divisorplot.com. Central binomial coefficients are found at the square root boundary.
A156348 * A000010 = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, ...). - Gary W. Adamson, Feb 16 2009
Row sums give A157019.

Examples

			Table begins:
1
1  1
1  0  1
1  2  0  1
1  0  0  0  1
1  3  3  0  0  1
1  0  0  0  0  0  1
1  4  0  4  0  0  0  1
1  0  6  0  0  0  0  0  1
1  5  0  0  5  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  1
1  6 10 10  0  6  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  1
1  7  0  0  0  0  7  0  0  0  0  0  0  1
1  0 15  0 15  0  0  0  0  0  0  0  0  0  1
1  8  0 20  0  0  0  8  0  0  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
1  9 21  0  0 21  0  0  9  0  0  0  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
1 10  0 35 35  0  0  0  0 10  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Haskell
    Following Mathar's Maple program.
    a156348 n k = a156348_tabl !! (n-1) !! (k-1)
    a156348_tabl = map a156348_row [1..]
    a156348_row n = map (f n) [1..n] where
       f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0
               where (n', r) = divMod n k
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    A156348 := proc(n,k)
        if k < 1 or k > n then
            return 0 ;
        elif n mod k = 0 then
            binomial(n/k-2+k,k-1) ;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)

A343517 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ... , x_n, n).

Original entry on oeis.org

1, 4, 12, 42, 130, 506, 1722, 6622, 24426, 93427, 352726, 1359388, 5200312, 20097156, 77567064, 300787366, 1166803126, 4539197723, 17672631918, 68933307843, 269129530770, 1052113994340, 4116715363822, 16124224571368, 63205303313900, 247961973949536
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Main diagonal of A343516.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[n + # - 1, n] &]; Array[a, 25] (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-1, n));

Formula

a(n) = Sum_{d|n} phi(n/d) * binomial(d+n-1, n).
a(n) = [x^n] Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^(n+1).
a(n) ~ 2^(2*n - 1) / sqrt(Pi*n). - Vaclav Kotesovec, May 23 2021

A156833 A054525 * A156348 * [1,2,3,...].

Original entry on oeis.org

1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11, 103, 13, 68, 127, 144, 17, 261, 19, 404, 291, 152, 23, 994, 370, 206, 540, 1093, 29, 2195, 31, 1584, 943, 338, 2543, 4808, 37, 416, 1479, 7371, 41, 7929, 43, 4691, 8976, 596, 47, 18876, 6510, 11035, 3091
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime.
Companion to A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19,...).

Examples

			a(4) = 6 since first 4 terms of A156348 * [1, 2, 3, 4,...] = (1, 3, 4, 9);
Then (1, 3, 4, 9) dot (0, -1, 0, 1) = (0 - 3 + 0 + 9) = 6. Row 4 of A054525 = (0, -1, 0, 1).
		

Crossrefs

Programs

  • Maple
    A156833T := proc(n,k)
        add(A054525(n,j)*A156348(j,k),j=k..n) ;
    end proc:
    A156833 := proc(n)
        add(A156833T(n,k)*k,k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    A054525[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0];
    A156348[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
    T[n_, k_] := Sum[A054525[n, j]*A156348[j, k], {j, k, n}];
    a[n_] := Sum[T[n, k]*k, {k, 1, n}];
    Table[a[n], {n, 1, 51}] (* Jean-François Alcover, Oct 15 2023 *)

Formula

A054525 * A156348 * [1,2,3,...]

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

A156836 Triangle read by rows, A156348 * A130207.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 2, 0, 2, 1, 0, 0, 0, 4, 1, 3, 6, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 4, 0, 8, 0, 0, 0, 4, 1, 0, 12, 0, 0, 0, 0, 0, 6, 1, 5, 0, 0, 20, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 6, 20, 20, 0, 12, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 16 2009

Keywords

Comments

Row sums = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 0, 2;
1, 2, 0, 2;
1, 0, 0, 0, 4;
1, 3, 6, 0, 0, 2;
1, 0, 0, 0, 0, 0, 6;
1, 4, 0, 8, 0, 0, 0, 4;
1, 0, 12, 0, 0, 0, 0, 0, 6;
1, 5, 0, 0, 20, 0, 0, 0, 0, 4;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
1, 6, 20, 20, 0, 12, 0, 0, 0, 0, 0, 4;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12;
1, 7, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 6;
...
		

Crossrefs

Formula

Triangle read by rows, A156348 * A130207, where A130207 = an infinite lower
triangular matrix with A000010 as the main diagonal and the rest zeros.

A338655 a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 3, 5, 9, 9, 22, 13, 32, 35, 53, 21, 121, 25, 96, 177, 166, 33, 297, 37, 491, 417, 218, 45, 1002, 549, 297, 705, 1375, 57, 2418, 61, 1640, 1405, 491, 3887, 4659, 73, 606, 2233, 8156, 81, 8989, 85, 6189, 11955, 872, 93, 16550, 10387, 12927, 4757, 11111, 105, 22392, 25757
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 1, #] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = 2*p - 1.
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,n/gcd(n,k)).
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Showing 1-6 of 6 results.