cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A343516 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 9, 1, 7, 17, 26, 19, 15, 1, 8, 23, 42, 39, 35, 13, 1, 9, 30, 64, 74, 76, 34, 20, 1, 10, 38, 93, 130, 153, 90, 56, 21, 1, 11, 47, 130, 214, 287, 216, 152, 63, 27, 1, 12, 57, 176, 334, 506, 468, 379, 191, 86, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
Square array begins:
   1,  1,  1,   1,   1,   1,    1, ...
   3,  4,  5,   6,   7,   8,    9, ...
   5,  8, 12,  17,  23,  30,   38, ...
   8, 15, 26,  42,  64,  93,  130, ...
   9, 19, 39,  74, 130, 214,  334, ...
  15, 35, 76, 153, 287, 506,  846, ...
  13, 34, 90, 216, 468, 930, 1722, ...
		

Crossrefs

Columns k=1..7 give A018804, A309322, A309323, A343518, A343519, A343520, A343521.
Main diagonal gives A343517.
T(n,n-1) gives A343553.
Cf. A343510.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} phi(j) * x^j/(1 - x^j)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * binomial(d+k-1, k).

A343553 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n = n} gcd(x_1, x_2, ... , x_n).

Original entry on oeis.org

1, 3, 8, 26, 74, 287, 930, 3572, 12966, 49379, 184766, 710712, 2704168, 10427822, 40123208, 155289768, 601080406, 2334740919, 9075135318, 35352194658, 137846990678, 538302226835, 2104098963742, 8233721100024, 32247603765020, 126412458921072, 495918569262798
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Examples

			a(3) = gcd(1,1,3) + gcd(1,2,3) + gcd(1,3,3) + gcd(2,2,3) + gcd(2,3,3) + gcd(3,3,3) = 1 + 1 + 1 + 1 + 1 + 3 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[# + n - 2, n-1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-2, n-1));

Formula

a(n) = A343516(n,n-1).
a(n) = Sum_{d|n} phi(n/d) * binomial(d+n-2, n-1).
a(n) = [x^n] Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n - 2) / sqrt(Pi*n). - Vaclav Kotesovec, May 23 2021

A343565 a(n) = |{(x_1, x_2, ... , x_n) : 1 <= x_1 <= x_2 <= ... <= x_n <= n, gcd(x_1, x_2, ... , x_n, n) = 1}|.

Original entry on oeis.org

1, 2, 9, 30, 125, 428, 1715, 6270, 24255, 91367, 352715, 1345448, 5200299, 20019526, 77554749, 300295038, 1166803109, 4535971916, 17672631899, 68913247655, 269128640958, 1051984969598, 4116715363799, 16123381989000, 63205303195125, 247956558998878, 973469689288236
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(d+n-1, n));

Formula

a(n) = Sum_{d|n} mu(n/d) * binomial(d+n-1, n).
a(n) = [x^n] Sum_{k>=1} mu(k) * x^k/(1 - x^k)^(n+1).

A345230 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ..., x_n).

Original entry on oeis.org

0, 1, 4, 13, 44, 140, 512, 1782, 6652, 24682, 93599, 354341, 1359470, 5210328, 20098886, 77621774, 300797854, 1167164438, 4539201401, 17674941735, 68933414989, 269143872226, 1052114789548, 4116808923486, 16124224585644, 63205911146740, 247961982954952
Offset: 0

Views

Author

Seiichi Manyama, Jun 11 2021

Keywords

Crossrefs

Main diagonal of A345229.

Programs

  • Maple
    a:= n-> coeff(series((1/(1-x))* add(numtheory[phi](k)
             *x^k/(1-x^k)^n, k=1..n), x, n+1), x, n):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jun 11 2021
  • Mathematica
    a[n_] := Sum[DivisorSum[k, EulerPhi[k/#] * Binomial[n + # - 2, n - 1] &], {k, 1, n}]; Array[a, 30, 0] (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(k/d)*binomial(d+n-2, n-1)));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*binomial(n\k+n-1, n)); \\ Seiichi Manyama, Sep 13 2024

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * binomial(d+n-2, n-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 11 2021
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+n-1,n). - Seiichi Manyama, Sep 13 2024

A338655 a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 3, 5, 9, 9, 22, 13, 32, 35, 53, 21, 121, 25, 96, 177, 166, 33, 297, 37, 491, 417, 218, 45, 1002, 549, 297, 705, 1375, 57, 2418, 61, 1640, 1405, 491, 3887, 4659, 73, 606, 2233, 8156, 81, 8989, 85, 6189, 11955, 872, 93, 16550, 10387, 12927, 4757, 11111, 105, 22392, 25757
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 1, #] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = 2*p - 1.
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,n/gcd(n,k)).
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
Showing 1-5 of 5 results.