cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A156834 A156348 * A000010.

Original entry on oeis.org

1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, 63, 13, 56, 99, 89, 17, 154, 19, 269, 237, 132, 23, 509, 301, 182, 379, 783, 29, 1230, 31, 881, 813, 306, 2125, 2431, 37, 380, 1299, 4157, 41, 4822, 43, 3695, 6175, 552, 47, 8529, 5587, 6266, 2787
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime. Companion to A156833.

Examples

			a(4) = 5 = (1, 2, 0, 1) dot (1, 1, 2, 2) = (1 + 2 + 0 + 2), where row 4 of A156348 = (1, 2, 0, 1) and (1, 1, 2, 2) = the first 4 terms of Euler's phi function.
		

Crossrefs

Equals row sums of triangle A157030. [Gary W. Adamson, Feb 21 2009]

Programs

  • Maple
    A156834 := proc(n)
            add(A156348(n,k)*numtheory[phi](k),k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 2, #-1] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-2, d-1)); \\ Seiichi Manyama, Apr 22 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*(x/(1-x^k))^k)) \\ Seiichi Manyama, Apr 22 2021

Formula

Equals A156348 * A054525 * [1, 2, 3,...]; where A054525 = the inverse Mobius transform.
a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-2, d-1). - Seiichi Manyama, Apr 22 2021
G.f.: Sum_{k >= 1} phi(k) * (x/(1 - x^k))^k. - Seiichi Manyama, Apr 22 2021

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

A156833 A054525 * A156348 * [1,2,3,...].

Original entry on oeis.org

1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11, 103, 13, 68, 127, 144, 17, 261, 19, 404, 291, 152, 23, 994, 370, 206, 540, 1093, 29, 2195, 31, 1584, 943, 338, 2543, 4808, 37, 416, 1479, 7371, 41, 7929, 43, 4691, 8976, 596, 47, 18876, 6510, 11035, 3091
Offset: 1

Views

Author

Gary W. Adamson, Feb 16 2009

Keywords

Comments

Conjecture: for n>1, a(n) = n iff n is prime.
Companion to A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19,...).

Examples

			a(4) = 6 since first 4 terms of A156348 * [1, 2, 3, 4,...] = (1, 3, 4, 9);
Then (1, 3, 4, 9) dot (0, -1, 0, 1) = (0 - 3 + 0 + 9) = 6. Row 4 of A054525 = (0, -1, 0, 1).
		

Crossrefs

Programs

  • Maple
    A156833T := proc(n,k)
        add(A054525(n,j)*A156348(j,k),j=k..n) ;
    end proc:
    A156833 := proc(n)
        add(A156833T(n,k)*k,k=1..n) ;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    A054525[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0];
    A156348[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
    T[n_, k_] := Sum[A054525[n, j]*A156348[j, k], {j, k, n}];
    a[n_] := Sum[T[n, k]*k, {k, 1, n}];
    Table[a[n], {n, 1, 51}] (* Jean-François Alcover, Oct 15 2023 *)

Formula

A054525 * A156348 * [1,2,3,...]

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013

A156837 Triangle read by rows, A051731 * A156348.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 3, 0, 1, 2, 0, 0, 0, 1, 4, 4, 4, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 4, 7, 0, 5, 0, 0, 0, 1, 3, 0, 7, 0, 0, 0, 0, 0, 1, 4, 6, 0, 0, 6, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 14, 11, 0, 7, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 16 2009

Keywords

Comments

Left border: A000005(n).
Row sums = 3 iff n-th row is prime.

Examples

			First few rows of the triangle =
1;
2, 1;
2, 0, 1;
3, 3, 0, 1;
2, 0, 0, 0, 1;
4, 4, 4, 0, 0, 1;
2, 0, 0, 0, 0, 0, 1;
4, 7, 0, 5, 0, 0, 0, 1;
3, 0, 7, 0, 0, 0, 0, 0, 1;
4, 6, 0, 0, 6, 0, 0, 0, 0, 1;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
6, 12, 14, 11, 0, 7, 0, 0, 0, 0, 0, 1;
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
4, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Cf. A156348, A051731, A000005, A156838 (row sums).

Programs

Formula

Triangle read by rows, A051731 * A156348 = inverse Mobius transform of A156348

A157497 Triangle read by rows, A156348 * A127648.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 4, 0, 4, 1, 0, 0, 0, 5, 1, 6, 9, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 8, 0, 16, 0, 0, 0, 8, 1, 0, 18, 0, 0, 0, 0, 0, 9, 1, 10, 0, 0, 25, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 12, 30, 40, 0, 36, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Mar 01 2009

Keywords

Comments

Row sums = A157020: (1, 3, 4, 9, 6, 22, 8,...)

Examples

			First few rows of the triangle =
1;
1, 2;
1, 0, 3;
1, 4, 0, 4;
1, 0, 0, 0, 5;
1, 6, 9, 0, 0, 6;
1, 0, 0, 0, 0, 0, 7;
1, 8, 0, 16, 0, 0, 0, 8;
1, 0, 18, 0, 0, 0, 0, 0, 9;
1, 10, 0, 0, 25, 0, 0, 0, 0, 10;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11;
1, 12, 30, 40, 0, 36, 0, 0, 0, 0, 0, 12;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13;
1, 14, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 14;
...
Row 4 = (1, 4, 0, 4) = termwise products of (1, 2, 0, 1) and (1, 2, 3, 4)
where (1, 2, 0, 1) = row 4 of triangle A156348.
		

Crossrefs

Formula

Triangle read by rows, A156348 * A127648. A127648 = an infinite lower triangular matrix with (1, 2, 3,...) as the main diagonal and the rest zeros.

A157028 Triangle read by rows, A007318 * A156348.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 5, 3, 1, 16, 12, 6, 4, 1, 32, 28, 13, 10, 5, 1, 64, 64, 33, 20, 15, 6, 1, 128, 144, 84, 39, 35, 21, 7, 1, 256, 320, 202, 88, 70, 56, 28, 8, 1, 512, 704, 468, 228, 131, 126, 84, 36, 9, 1, 1024, 1536, 1071, 600, 260, 252, 210, 120, 45, 10, 1
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Comments

Row sums = A157029: (1, 3, 7, 17, 39, 89, 203, 459,...).

Examples

			1;
2, 1;
4, 2, 1;
8, 5, 3, 1;
16, 12, 6, 4, 1;
32, 28, 13, 10, 5, 1;
64, 64, 33, 20, 15, 6, 1;
128, 144, 84, 39, 35, 21, 7, 1;
256, 320, 202, 88, 70, 56, 28, 8, 1;
512, 704, 468, 228, 131, 126, 84, 36, 9, 1;
1024, 1536, 1071, 600, 260, 252, 210, 120, 45, 10, 1;
2048, 3328, 2441, 1495, 605, 468, 462, 330, 165, 55, 11, 1;
4096, 7168, 5532, 3508, 1595, 864, 924, 792, 495, 220, 66, 12, 1;
...
		

Crossrefs

Formula

Triangle read by rows, binomial transform of A156348.

A156836 Triangle read by rows, A156348 * A130207.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 2, 0, 2, 1, 0, 0, 0, 4, 1, 3, 6, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 4, 0, 8, 0, 0, 0, 4, 1, 0, 12, 0, 0, 0, 0, 0, 6, 1, 5, 0, 0, 20, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 6, 20, 20, 0, 12, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 16 2009

Keywords

Comments

Row sums = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 0, 2;
1, 2, 0, 2;
1, 0, 0, 0, 4;
1, 3, 6, 0, 0, 2;
1, 0, 0, 0, 0, 0, 6;
1, 4, 0, 8, 0, 0, 0, 4;
1, 0, 12, 0, 0, 0, 0, 0, 6;
1, 5, 0, 0, 20, 0, 0, 0, 0, 4;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
1, 6, 20, 20, 0, 12, 0, 0, 0, 0, 0, 4;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12;
1, 7, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, 6;
...
		

Crossrefs

Formula

Triangle read by rows, A156348 * A130207, where A130207 = an infinite lower
triangular matrix with A000010 as the main diagonal and the rest zeros.

A156839 Triangle read by rows, A054525 * A156348 * A000012.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 4, 4, 1, 1, 1, 1, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 9, 9, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 24, 22, 15, 6, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Feb 16 2009

Keywords

Comments

For rows >1, n-th row = all 1's iff n is prime.
Row sums = A156833: (1, 2, 3, 6, 5, 16, 7, 24, 24, 38, 11,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
1, 1, 1, 1, 1;
5, 5, 3, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1;
6, 6, 4, 4, 1, 1, 1, 1;
6, 6, 6, 1, 1, 1, 1, 1, 1;
9, 9, 5, 5, 5, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
24, 24, 22, 15, 6, 6, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
13, 13, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A054525 * A156348 * A000012 A054525 = the inverse Mobius transform, A000012 = an infinite lower triangular matrix with all 1's.

A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 10, 8, 12, 2, 34, 2, 16, 32, 38, 2, 62, 2, 92, 58, 24, 2, 210, 72, 28, 92, 198, 2, 394, 2, 274, 134, 36, 422, 776, 2, 40, 184, 1142, 2, 1178, 2, 618, 1232, 48, 2, 2634, 926, 1482, 308, 964, 2, 2972, 2004, 4610, 382, 60, 2, 8576, 2, 64, 6470, 5130
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A156348. - Gary W. Adamson & Mats Granvik, Feb 21 2009
a(n) = 2 iff n is prime.
The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - R. J. Mathar, Mar 03 2013
a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - Luc Rousseau, Jun 27 2017

Examples

			a(4) = 4 = 1 + 2 + 0 + 1.
		

Crossrefs

Cf. A081543, A018818, A156838 (Mobius transform).
Cf. A156348.
Cf. A000010.

Programs

  • Maple
    A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:
  • Mathematica
    a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,x^m/(1-x^m+x*O(x^n))^m),n)} \\ Paul D. Hanna, Mar 01 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021

A156838 Row sums of triangle A156837.

Original entry on oeis.org

1, 3, 3, 7, 3, 13, 3, 17, 11, 17, 3, 51, 3, 21, 37, 55, 3, 83, 3, 113, 63, 29, 3, 271, 75, 33, 103, 223, 3, 453, 3, 329, 139, 41, 427, 897, 3, 45, 189, 1265, 3, 1267, 3, 651, 1277, 53, 3, 2943, 929, 1571, 313, 1001, 3, 3147, 2009, 4843, 387, 65, 3, 9159, 3, 69, 6541, 5459, 3647, 6753, 3, 2053, 559, 15299, 3, 25677, 3, 81
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 16 2009

Keywords

Comments

a(n) = 3 iff n is prime.

Examples

			a(4) = 7 since row 4 of triangle A156837 = (3, 3, 0, 1).
		

Crossrefs

Programs

Formula

Row sums of triangle A156837.

Extensions

Extended beyond a(14) by R. J. Mathar, Mar 03 2013
More terms from Antti Karttunen, Nov 30 2024

A157029 A007318 * A157019.

Original entry on oeis.org

1, 3, 7, 17, 39, 89, 203, 459, 1029, 2299, 5129, 11409, 25273, 55787, 122875, 270239, 593331, 1299883, 2841243, 6197855, 13499235, 29366411, 63809311, 138466835, 300036895, 649186659, 1402796793, 3027908077, 6529611587, 14068804905
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A157028.

Examples

			a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4). a(4) = 17 = sum of row 4 terms, triangle A157028: (8 + 5 + 3 + 1).
G.f.: A(x) = x + 3*x^2 + 7*x^3 + 17*x^4 + 39*x^5 + 89*x^6 + 203*x^7 + 459*x^8 + 1029*x^9 + 2299*x^10 + ...
such that
A(x) = x/((1-x) - x) + x^2*(1-x)^2/((1-x)^2 - x^2)^2 + x^3*(1-x)^6/((1-x)^3 - x^3)^3 + x^4*(1-x)^12/((1-x)^4 - x^4)^4 + x^5*(1-x)^20/((1-x)^5 - x^5)^5 + ...
		

Crossrefs

Formula

G.f.: Sum_{n>=1} x^n * (1-x)^(n*(n-1)) / ((1-x)^n - x^n)^n. - Paul D. Hanna, Mar 26 2018
G.f.: Sum_{n>=1} x^n/(1-x)^n / (1 - x^n/(1-x)^n)^n. - Paul D. Hanna, Mar 26 2018

Extensions

Extended by R. J. Mathar, Apr 07 2009
Showing 1-10 of 10 results.