cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A157029 A007318 * A157019.

Original entry on oeis.org

1, 3, 7, 17, 39, 89, 203, 459, 1029, 2299, 5129, 11409, 25273, 55787, 122875, 270239, 593331, 1299883, 2841243, 6197855, 13499235, 29366411, 63809311, 138466835, 300036895, 649186659, 1402796793, 3027908077, 6529611587, 14068804905
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A157028.

Examples

			a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4). a(4) = 17 = sum of row 4 terms, triangle A157028: (8 + 5 + 3 + 1).
G.f.: A(x) = x + 3*x^2 + 7*x^3 + 17*x^4 + 39*x^5 + 89*x^6 + 203*x^7 + 459*x^8 + 1029*x^9 + 2299*x^10 + ...
such that
A(x) = x/((1-x) - x) + x^2*(1-x)^2/((1-x)^2 - x^2)^2 + x^3*(1-x)^6/((1-x)^3 - x^3)^3 + x^4*(1-x)^12/((1-x)^4 - x^4)^4 + x^5*(1-x)^20/((1-x)^5 - x^5)^5 + ...
		

Crossrefs

Formula

G.f.: Sum_{n>=1} x^n * (1-x)^(n*(n-1)) / ((1-x)^n - x^n)^n. - Paul D. Hanna, Mar 26 2018
G.f.: Sum_{n>=1} x^n/(1-x)^n / (1 - x^n/(1-x)^n)^n. - Paul D. Hanna, Mar 26 2018

Extensions

Extended by R. J. Mathar, Apr 07 2009

A157031 Triangle A054521 * A157019, where A054521 = an infinite lower triangular matrix and A157019 = a vector [1, 2, 2, 4, 2, 8, 2, 10, 8, ...].

Original entry on oeis.org

1, 1, 3, 3, 9, 3, 19, 7, 21, 13, 51, 7, 87, 17, 39, 51, 175, 11, 239, 21, 169, 111, 415, 15, 489, 185, 313, 219, 1017, 15, 1413, 283, 763, 415, 981, 513, 3057, 839, 1259, 497, 4425, 93, 5605, 893, 1311, 2259, 7505, 521, 8267, 1429, 5473, 3311, 13821, 1449, 11135, 4095
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Examples

			a(4) = 3 = (1, 0, 1, 0) dot (1, 2, 2, 4) = (1 + 0 + 2 + 0), where (1, 0, 1, 0) equals row 4 of triangle A054521.
		

Crossrefs

Programs

A081543 G.f.: Sum_{k >= 1} x^k/(1-x^k)^(k+1).

Original entry on oeis.org

1, 3, 4, 8, 6, 17, 8, 24, 20, 32, 12, 76, 14, 51, 72, 97, 18, 158, 20, 213, 142, 101, 24, 491, 152, 132, 248, 479, 30, 915, 32, 681, 398, 206, 828, 1859, 38, 249, 600, 2560, 42, 2692, 44, 1686, 2864, 347, 48, 6166, 1766, 3405, 1192, 2811, 54, 6796, 4424, 9987
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2003

Keywords

Crossrefs

Cf. A157019.

Programs

  • Mathematica
    With[{nn=50},CoefficientList[Series[Sum[x^k/(1-x^k)^(k+1),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/(1-x^k)^k,x*O(x^(n^2))),n))

Formula

If p is prime then a(p)=p+1.
a(n) = Sum_{d|n} binomial(d-1+n/d,d). - R. J. Mathar, Feb 21 2009

Extensions

Description corrected by Vladeta Jovovic, Aug 22 2003
Corrected offset R. J. Mathar, Feb 21 2009

A324158 Expansion of Sum_{k>=1} x^k / (1 - k * x^k)^k.

Original entry on oeis.org

1, 2, 2, 6, 2, 23, 2, 50, 56, 107, 2, 660, 2, 499, 1592, 2370, 2, 8246, 2, 18557, 21786, 11387, 2, 175198, 43752, 53419, 298892, 487762, 2, 1891098, 2, 2552066, 3905222, 1114403, 3785462, 29081597, 2, 4981099, 48376512, 95510772, 2, 218764940, 2, 346411232, 770590352
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^k/(1 - k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(n/d)^(d - 1) Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}], {n, 1, 45}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d+d-2, d-1)); \\ Michel Marcus, Sep 02 2019
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, x^k/(1-k*x^k)^k)) \\ Seiichi Manyama, Sep 03 2019

Formula

a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(n/d+d-2,d-1).
a(p) = 2, where p is prime.

A156348 Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 0, 4, 0, 0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 10, 10, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Feb 08 2009

Keywords

Comments

The rows of the Pascal triangle are here found as square root parabolas like in the plots at www.divisorplot.com. Central binomial coefficients are found at the square root boundary.
A156348 * A000010 = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, ...). - Gary W. Adamson, Feb 16 2009
Row sums give A157019.

Examples

			Table begins:
1
1  1
1  0  1
1  2  0  1
1  0  0  0  1
1  3  3  0  0  1
1  0  0  0  0  0  1
1  4  0  4  0  0  0  1
1  0  6  0  0  0  0  0  1
1  5  0  0  5  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  1
1  6 10 10  0  6  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  1
1  7  0  0  0  0  7  0  0  0  0  0  0  1
1  0 15  0 15  0  0  0  0  0  0  0  0  0  1
1  8  0 20  0  0  0  8  0  0  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
1  9 21  0  0 21  0  0  9  0  0  0  0  0  0  0  0  1
1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
1 10  0 35 35  0  0  0  0 10  0  0  0  0  0  0  0  0  0  1
		

Crossrefs

Programs

  • Haskell
    Following Mathar's Maple program.
    a156348 n k = a156348_tabl !! (n-1) !! (k-1)
    a156348_tabl = map a156348_row [1..]
    a156348_row n = map (f n) [1..n] where
       f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0
               where (n', r) = divMod n k
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    A156348 := proc(n,k)
        if k < 1 or k > n then
            return 0 ;
        elif n mod k = 0 then
            binomial(n/k-2+k,k-1) ;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Mar 03 2013
  • Mathematica
    T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)

A324159 Expansion of Sum_{k>=1} k * x^k / (1 - k * x^k)^k.

Original entry on oeis.org

1, 3, 4, 13, 6, 58, 8, 137, 172, 296, 12, 2063, 14, 1254, 5536, 7697, 18, 25201, 20, 68976, 70862, 23882, 24, 607485, 218776, 108720, 918568, 1810089, 30, 6746147, 32, 9408545, 11779582, 2233172, 19935756, 102405280, 38, 9968370, 145283360, 393585971, 42, 730233631, 44, 1296043651, 2718300016
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[k x^k/(1 - k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(n/d)^d Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}], {n, 1, 45}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d * binomial(n/d+d-2, d-1)); \\ Michel Marcus, Sep 02 2019
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k*x^k/(1-k*x^k)^k)) \\ Seiichi Manyama, Sep 03 2019

Formula

a(n) = Sum_{d|n} (n/d)^d * binomial(n/d+d-2,d-1).
a(p) = p + 1, where p is prime.

A338661 a(n) = Sum_{d|n} d^n * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 289, 3126, 49036, 823544, 17040385, 387538588, 10048833246, 285311670612, 8929334253419, 302875106592254, 11116754387182648, 437894348359764856, 18448995959423107073, 827240261886336764178, 39347761059781438793815, 1978419655660313589123980
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^n * Binomial[# + n/# - 2, #-1] &]; Array[a, 20] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^n*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 1 + p^p.
a(n) ~ n^n. - Vaclav Kotesovec, Aug 04 2025

A343573 a(n) = Sum_{d|n} d^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 5, 28, 265, 3126, 46750, 823544, 16778257, 387420652, 10000015646, 285311670612, 8916100731047, 302875106592254, 11112006831322846, 437893890380906656, 18446744073843774497, 827240261886336764178, 39346408075300025340205
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} (k * x/(1 - x^k))^k.
If p is prime, a(p) = 1 + p^p.

A339481 a(n) = Sum_{d|n} d^(n-d) * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 2, 2, 10, 2, 131, 2, 1282, 4376, 16907, 2, 1138272, 2, 5793475, 154455992, 469893122, 2, 49501130330, 2, 1318441711177, 19001093813466, 3138439911059, 2, 15989399214596398, 6675720214843752, 3937376603803099, 6754271297694102092, 47097064577536888014, 2
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - #) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(n-d)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-(k*x)^k))^k))

Formula

G.f.: Sum_{k >= 1} (x/(1 - (k * x)^k))^k.
If p is prime, a(p) = 2.

A217670 G.f.: Sum_{n>=0} x^n/(1 + x^n)^n.

Original entry on oeis.org

1, 1, 0, 2, -2, 2, 0, 2, -8, 8, 0, 2, -12, 2, 0, 32, -36, 2, 0, 2, -20, 58, 0, 2, -136, 72, 0, 92, -28, 2, 0, 2, -272, 134, 0, 422, -288, 2, 0, 184, -480, 2, 0, 2, -44, 1232, 0, 2, -2360, 926, 0, 308, -52, 2, 0, 2004, -1176, 382, 0, 2, -4064, 2, 0, 6470, -5128, 3642
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^3 - 2*x^4 + 2*x^5 + 2*x^7 - 8*x^8 + 8*x^9 +...
where
A(x) = 1 + x/(1+x) + x^2/(1+x^2)^2 + x^3/(1+x^3)^3 + x^4/(1+x^4)^4 + x^5/(1+x^5)^5 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; Sum[x^n/(1 + x^n)^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m/(1+x^m +x*O(x^n))^m), n)}
    for(n=0, 100, print1(a(n), ", "))
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, (-1)^(d-1)*binomial(d+n/d-2, d-1))); \\ Seiichi Manyama, Apr 23 2021

Formula

a(4*n+2) = 0 for n>=0.
From Seiichi Manyama, Apr 23 2021: (Start)
a(n) = Sum_{d|n} (-1)^(d-1) * binomial(d+n/d-2, d-1) for n > 0.
If p is prime, a(p) = 1 + (-1)^(p-1). (End)
Showing 1-10 of 20 results. Next