cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 10, 8, 12, 2, 34, 2, 16, 32, 38, 2, 62, 2, 92, 58, 24, 2, 210, 72, 28, 92, 198, 2, 394, 2, 274, 134, 36, 422, 776, 2, 40, 184, 1142, 2, 1178, 2, 618, 1232, 48, 2, 2634, 926, 1482, 308, 964, 2, 2972, 2004, 4610, 382, 60, 2, 8576, 2, 64, 6470, 5130
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A156348. - Gary W. Adamson & Mats Granvik, Feb 21 2009
a(n) = 2 iff n is prime.
The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - R. J. Mathar, Mar 03 2013
a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - Luc Rousseau, Jun 27 2017

Examples

			a(4) = 4 = 1 + 2 + 0 + 1.
		

Crossrefs

Cf. A081543, A018818, A156838 (Mobius transform).
Cf. A156348.
Cf. A000010.

Programs

  • Maple
    A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:
  • Mathematica
    a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    {a(n)=polcoeff(sum(m=1,n,x^m/(1-x^m+x*O(x^n))^m),n)} \\ Paul D. Hanna, Mar 01 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021

A157020 a(n) = Sum_{d|n} d*binomial(n/d+d-2,d-1).

Original entry on oeis.org

1, 3, 4, 9, 6, 22, 8, 33, 28, 46, 12, 131, 14, 78, 136, 177, 18, 307, 20, 456, 302, 166, 24, 1149, 376, 222, 568, 1177, 30, 2387, 32, 1761, 958, 358, 2556, 5224, 38, 438, 1496, 7851, 42, 8317, 44, 4863, 9136, 622, 48, 20169, 6518, 11451, 3112, 8516, 54, 23734
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2009

Keywords

Comments

Equals row sums of triangle A157497. [Gary W. Adamson & Mats Granvik, Mar 01 2009]

Crossrefs

Cf. A081543, A132065, A156833 (Mobius transform), A324158, A324159.

Programs

  • Maple
    add( d*binomial(n/d+d-2,d-1),d=numtheory[divisors](n) ) ;
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k*x^k/(1-x^k)^k)) \\ Seiichi Manyama, Sep 03 2019

Formula

G.f.: Sum_{n>=1} n*x^n/(1-x^n)^n.

A338662 a(n) = Sum_{d|n} (n/d)^d * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 5, 10, 29, 26, 123, 50, 305, 352, 668, 122, 3844, 170, 2593, 9704, 13825, 290, 41598, 362, 118259, 107986, 33047, 530, 929102, 394376, 130744, 1203580, 2737415, 842, 9910225, 962, 13315073, 14199222, 2404670, 33547310, 136502007, 1370, 10555795, 168405072, 548460064, 1682
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + n/# - 1, #] &]; Array[a, 40] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d*binomial(d+n/d-1, d));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, 1/(1-k*x^k)^k-1))

Formula

G.f.: Sum_{k >= 1} (1/(1 - k * x^k)^k - 1).
If p is prime, a(p) = 1 + p^2.

A338682 a(n) = Sum_{d|n} (-1)^(d-1) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 1, 4, 0, 6, 3, 8, -8, 20, 0, 12, -12, 14, -7, 72, -65, 18, 10, 20, -61, 142, -33, 24, -203, 152, -52, 248, -183, 30, 121, 32, -617, 398, -102, 828, -619, 38, -133, 600, -896, 42, 140, 44, -870, 2864, -207, 48, -4438, 1766, 751, 1192, -1587, 54, -348, 4424, -3011, 1598, -348, 60
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 60] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*binomial(d+n/d-1, d));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, 1-1/(1+x^k)^k))
    
  • PARI
    N=66; x='x+O('x^N); Vec(-sum(k=1, N, (-x)^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} (1 - 1/(1 + x^k)^k).
G.f.: - Sum_{k >= 1} (-x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = (-1)^(p-1) + p.

A338663 a(n) = Sum_{d|n} (n/d)^n * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 9, 82, 1073, 15626, 284567, 5764802, 134874369, 3486981232, 100146490520, 3138428376722, 107039261352736, 3937376385699290, 155587085803983069, 6568409424129452048, 295158038428838854657, 14063084452067724991010, 708242105301294465144506, 37589973457545958193355602
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n/d-1, d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, 1/(1-(k*x)^k)^k-1))

Formula

G.f.: Sum_{k >= 1} (1/(1 - (k * x)^k)^k - 1).
If p is prime, a(p) = 1 + p^(p+1).

A343574 a(n) = Sum_{d|n} d^d * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 6, 30, 272, 3130, 46794, 823550, 16778544, 387420768, 10000018820, 285311670622, 8916100779324, 302875106592266, 11112006832146486, 437893890380925960, 18446744073860555680, 827240261886336764194, 39346408075300413088392
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^#*Binomial[# + n/# - 1, #] &]; Array[a, 20] (* Amiram Eldar, Apr 20 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(d+n/d-1, d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} (k * x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = p + p^p.

A338658 a(n) = Sum_{d|n} d * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 4, 6, 14, 10, 36, 14, 56, 48, 80, 22, 228, 26, 140, 240, 316, 34, 552, 38, 820, 546, 308, 46, 2088, 680, 416, 1044, 2156, 58, 4380, 62, 3248, 1782, 680, 4690, 9672, 74, 836, 2808, 14560, 82, 15456, 86, 9108, 17040, 1196, 94, 37704, 12110, 21420, 5916, 16068, 106, 44496
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # * Binomial[# + n/# - 1, #] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} k * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = 2*p.

A360794 Expansion of Sum_{k>0} x^k / (1 - k * x^k)^(k+1).

Original entry on oeis.org

1, 3, 4, 11, 6, 43, 8, 109, 100, 281, 12, 1507, 14, 1863, 3376, 6937, 18, 26245, 20, 53211, 63022, 67739, 24, 572413, 78776, 372945, 1087048, 1761719, 30, 7362871, 32, 9947953, 16897486, 10027349, 8011116, 123101515, 38, 49807779, 241823440, 361722421, 42
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n/# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 40] (* Amiram Eldar, Jul 31 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-k*x^k)^(k+1)))
    
  • PARI
    a(n) = sumdiv(n, d, d^(n/d-1)*binomial(d+n/d-1, d));

Formula

a(n) = Sum_{d|n} d^(n/d-1) * binomial(d+n/d-1,d).
If p is prime, a(p) = 1 + p.

A340626 a(n) = Sum_{d|n, d odd} binomial(d+n/d-1, d).

Original entry on oeis.org

1, 2, 4, 4, 6, 10, 8, 8, 20, 16, 12, 32, 14, 22, 72, 16, 18, 84, 20, 76, 142, 34, 24, 144, 152, 40, 248, 148, 30, 518, 32, 32, 398, 52, 828, 620, 38, 58, 600, 832, 42, 1416, 44, 408, 2864, 70, 48, 864, 1766, 2078, 1192, 612, 54, 3224, 4424, 3488, 1598, 88, 60, 6784, 62, 94, 13528, 64, 8634
Offset: 1

Views

Author

Seiichi Manyama, Apr 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n/# - 1, #] &, OddQ[#] &]; Array[a, 65] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (d%2)*binomial(d+n/d-1, d));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, 1/(1-x^k)^k-1/(1+x^k)^k)/2)
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(2*k-1))^(2*k)))

Formula

G.f.: (1/2) * Sum_{k >= 1} (1/(1 - x^k)^k - 1/(1 + x^k)^k).
G.f.: Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1))^(2*k).
a(n) = (A081543(n) + A338682(n))/2.
If p is prime, a(p) = (p mod 2) + p.

A344777 a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, -1, 4, -6, 6, -3, 8, -22, 20, 0, 12, -44, 14, 7, 72, -95, 18, -10, 20, -71, 142, 33, 24, -399, 152, 52, 248, -57, 30, -121, 32, -679, 398, 102, 828, -685, 38, 133, 600, -1568, 42, -140, 44, 318, 2864, 207, 48, -5858, 1766, -751, 1192, 831, 54, 348, 4424, -3979, 1598, 348, 60
Offset: 1

Views

Author

Seiichi Manyama, May 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(n/# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 60] (* Amiram Eldar, May 28 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d-1)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} x^k/(1 + x^k)^(k+1).
If p is prime, a(p) = 1 + (-1)^(p-1) * p.
Showing 1-10 of 14 results. Next